{"title":"Granger Causality: Basic Theory and Application to Neuroscience","authors":"M. Ding, Yonghong Chen, S. Bressler","doi":"10.1002/9783527609970.CH17","DOIUrl":null,"url":null,"abstract":"Multi-electrode neurophysiological recordings produce massive quantities of data. Multivariate time series analysis provides the basic framework for analyzing the patterns of neural interactions in these data. It has long been recognized that neural interactions are directional. Being able to assess the directionality of neuronal interactions is thus a highly desired capability for understanding the cooperative nature of neural computation. Research over the last few years has shown that Granger causality is a key technique to furnish this capability. The main goal of this article is to provide an expository introduction to the concept of Granger causality. Mathematical frameworks for both bivariate Granger causality and conditional Granger causality are developed in detail with particular emphasis on their spectral representations. The technique is demonstrated in numerical examples where the exact answers of causal influences are known. It is then applied to analyze multichannel local field potentials recorded from monkeys performing a visuomotor task. Our results are shown to be physiologically interpretable and yield new insights into the dynamical organization of large-scale oscillatory cortical networks.","PeriodicalId":119149,"journal":{"name":"arXiv: Quantitative Methods","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"636","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9783527609970.CH17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 636
Abstract
Multi-electrode neurophysiological recordings produce massive quantities of data. Multivariate time series analysis provides the basic framework for analyzing the patterns of neural interactions in these data. It has long been recognized that neural interactions are directional. Being able to assess the directionality of neuronal interactions is thus a highly desired capability for understanding the cooperative nature of neural computation. Research over the last few years has shown that Granger causality is a key technique to furnish this capability. The main goal of this article is to provide an expository introduction to the concept of Granger causality. Mathematical frameworks for both bivariate Granger causality and conditional Granger causality are developed in detail with particular emphasis on their spectral representations. The technique is demonstrated in numerical examples where the exact answers of causal influences are known. It is then applied to analyze multichannel local field potentials recorded from monkeys performing a visuomotor task. Our results are shown to be physiologically interpretable and yield new insights into the dynamical organization of large-scale oscillatory cortical networks.