{"title":"Computing Statistical Characteristics When We Know Probabilities with Interval or Fuzzy Uncertainty: Computational Complexity","authors":"G. Xiang, J. W. Hall","doi":"10.1109/NAFIPS.2007.383904","DOIUrl":null,"url":null,"abstract":"In traditional statistics, we usually assume that we know the exact probability distributions. In practice, we often only know the probabilities with interval uncertainty. The main emphasis on taking this uncertainty into account has been on situations in which we know a cumulative distribution function (cdf) with interval uncertainty. However, in some cases, we know the probability density function (pdf) with interval uncertainty. We show that in this situations, the exact range of some statistical characteristics can be efficiently computed. Surprisingly, for some other characteristics, similar statistical problems which are efficiently solvable for interval-valued cdf become computationally difficult (NP-hard) for interval-valued pdf.","PeriodicalId":292853,"journal":{"name":"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2007.383904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In traditional statistics, we usually assume that we know the exact probability distributions. In practice, we often only know the probabilities with interval uncertainty. The main emphasis on taking this uncertainty into account has been on situations in which we know a cumulative distribution function (cdf) with interval uncertainty. However, in some cases, we know the probability density function (pdf) with interval uncertainty. We show that in this situations, the exact range of some statistical characteristics can be efficiently computed. Surprisingly, for some other characteristics, similar statistical problems which are efficiently solvable for interval-valued cdf become computationally difficult (NP-hard) for interval-valued pdf.