{"title":"Sensor-Assisted Face Recognition System on Smart Glass via Multi-View Sparse Representation Classification","authors":"Weitao Xu, Yiran Shen, N. Bergmann, Wen Hu","doi":"10.1109/IPSN.2016.7460721","DOIUrl":null,"url":null,"abstract":"Face recognition is one of the most popular research problems on various platforms. New research issues arise when it comes to resource constrained devices, such as smart glasses, due to the overwhelming computation and energy requirements of the accurate face recognition methods. In this paper, we propose a robust and efficient sensor-assisted face recognition system on smart glasses by exploring the power of multimodal sensors including the camera and Inertial Measurement Unit (IMU) sensors. The system is based on a novel face recognition algorithm, namely Multi-view Sparse Representation Classification (MVSRC), by exploiting the prolific information among multi-view face images. To improve the efficiency of MVSRC on smart glasses, we propose a novel sampling optimization strategy using the less expensive inertial sensors. Our evaluations on public and private datasets show that the proposed method is up to 10% more accurate than the state-of-the-art multi-view face recognition methods while its computation cost is in the same order as an efficient benchmark method (e.g., Eigenfaces). Finally, extensive real-world experiments show that our proposed system improves recognition accuracy by up to 15% while achieving the same level of system overhead compared to the existing face recognition system (OpenCV algorithms) on smart glasses.","PeriodicalId":137855,"journal":{"name":"2016 15th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)","volume":"584 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPSN.2016.7460721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
Face recognition is one of the most popular research problems on various platforms. New research issues arise when it comes to resource constrained devices, such as smart glasses, due to the overwhelming computation and energy requirements of the accurate face recognition methods. In this paper, we propose a robust and efficient sensor-assisted face recognition system on smart glasses by exploring the power of multimodal sensors including the camera and Inertial Measurement Unit (IMU) sensors. The system is based on a novel face recognition algorithm, namely Multi-view Sparse Representation Classification (MVSRC), by exploiting the prolific information among multi-view face images. To improve the efficiency of MVSRC on smart glasses, we propose a novel sampling optimization strategy using the less expensive inertial sensors. Our evaluations on public and private datasets show that the proposed method is up to 10% more accurate than the state-of-the-art multi-view face recognition methods while its computation cost is in the same order as an efficient benchmark method (e.g., Eigenfaces). Finally, extensive real-world experiments show that our proposed system improves recognition accuracy by up to 15% while achieving the same level of system overhead compared to the existing face recognition system (OpenCV algorithms) on smart glasses.