University of California, Berkeley

Colleen Reding
{"title":"University of California, Berkeley","authors":"Colleen Reding","doi":"10.4324/9781003235361-23","DOIUrl":null,"url":null,"abstract":"Doubly-robust estimators are widely used to draw inference about the average effect of a treatment. Such estimators are consistent for the effect of interest if either one of two nuisance parameters is consistently estimated. However, if flexible, data-adaptive estimators of these nuisance parameters are used, double-robustness does not readily extend to inference. We present a general theoretical study of the behavior of doubly-robust estimators of an average treatment effect when one of the nuisance parameters is inconsistently estimated. We contrast dif-ferent approaches for constructing such estimators and investigate the extent to which they may be modified to also allow doubly-robust inference. We find that while targeted maximum likelihood estimation can be used to solve this problem very naturally, common alternative frameworks appear to be inappropriate for this purpose. We provide a theoretical study and a numerical evaluation of the alternatives considered. Our simulations highlight the need and usefulness of these approaches in practice, while our theoretical developments have broad implications for the construction of estimators that permit doubly-robust inference in other problems.","PeriodicalId":129419,"journal":{"name":"Grad's Guide to Graduate Admissions Essays","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Grad's Guide to Graduate Admissions Essays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4324/9781003235361-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Doubly-robust estimators are widely used to draw inference about the average effect of a treatment. Such estimators are consistent for the effect of interest if either one of two nuisance parameters is consistently estimated. However, if flexible, data-adaptive estimators of these nuisance parameters are used, double-robustness does not readily extend to inference. We present a general theoretical study of the behavior of doubly-robust estimators of an average treatment effect when one of the nuisance parameters is inconsistently estimated. We contrast dif-ferent approaches for constructing such estimators and investigate the extent to which they may be modified to also allow doubly-robust inference. We find that while targeted maximum likelihood estimation can be used to solve this problem very naturally, common alternative frameworks appear to be inappropriate for this purpose. We provide a theoretical study and a numerical evaluation of the alternatives considered. Our simulations highlight the need and usefulness of these approaches in practice, while our theoretical developments have broad implications for the construction of estimators that permit doubly-robust inference in other problems.
加州大学伯克利分校
双鲁棒估计器被广泛用于对处理的平均效果进行推断。如果两个干扰参数中的任何一个被一致地估计,那么这种估计对于兴趣的影响是一致的。然而,如果使用这些干扰参数的灵活的数据自适应估计器,双鲁棒性不容易扩展到推理。我们提出了一个一般的理论研究的行为双鲁棒估计的平均处理效果,当一个干扰参数是不一致估计。我们对比了构建这种估计器的不同方法,并研究了它们可能被修改以允许双鲁棒推理的程度。我们发现,虽然有针对性的最大似然估计可以很自然地用于解决这个问题,但常见的替代框架似乎不适合这个目的。我们对所考虑的备选方案进行了理论研究和数值评估。我们的模拟强调了这些方法在实践中的必要性和实用性,而我们的理论发展对在其他问题中允许双鲁棒推理的估计器的构建具有广泛的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信