dispel4py: a Python framework for data-intensive eScience

A. Krause, Rosa Filgueira, M. Atkinson
{"title":"dispel4py: a Python framework for data-intensive eScience","authors":"A. Krause, Rosa Filgueira, M. Atkinson","doi":"10.1145/2835857.2835863","DOIUrl":null,"url":null,"abstract":"We present dispel4py, a novel data intensive and high performance computing middleware provided as a standard Python library for describing stream-based workflows. It allows its users to develop their scientific applications locally and then run them on a wide range of HPC-infrastructures without any changes to the code. Moreover, it provides automated and efficient parallel mappings to MPI, multiprocessing, Storm and Spark frameworks, commonly used in big data applications. It builds on the wide availability of Python in many environments and only requires familiarity with basic Python syntax. We will show the dispel4py advantages by walking through an example. We will conclude demonstrating how dispel4py can be employed as an easy-to-use tool for designing scientific applications using real-world scenarios.","PeriodicalId":171838,"journal":{"name":"Workshop on Python for High-Performance and Scientific Computing","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Python for High-Performance and Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2835857.2835863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present dispel4py, a novel data intensive and high performance computing middleware provided as a standard Python library for describing stream-based workflows. It allows its users to develop their scientific applications locally and then run them on a wide range of HPC-infrastructures without any changes to the code. Moreover, it provides automated and efficient parallel mappings to MPI, multiprocessing, Storm and Spark frameworks, commonly used in big data applications. It builds on the wide availability of Python in many environments and only requires familiarity with basic Python syntax. We will show the dispel4py advantages by walking through an example. We will conclude demonstrating how dispel4py can be employed as an easy-to-use tool for designing scientific applications using real-world scenarios.
dispel4py:用于数据密集型科学的Python框架
我们提出了dispel4py,一个新的数据密集型和高性能计算中间件,作为一个标准的Python库提供,用于描述基于流的工作流。它允许用户在本地开发他们的科学应用程序,然后在各种高性能计算基础设施上运行它们,而无需对代码进行任何更改。此外,它还提供了自动和高效的并行映射到MPI、multiprocessing、Storm和Spark框架,这些框架通常用于大数据应用。它建立在Python在许多环境中广泛可用的基础上,只需要熟悉基本的Python语法。我们将通过一个示例来展示分布式的优点。最后,我们将演示如何将dispel4py用作使用真实场景设计科学应用程序的易于使用的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信