Data Analysis of Magnetic Flux Leakage Detection Based on Multi-Source Information Fusion

Shao Weilin, Ming Sun, Ma Yilai, Chen Jinzhong, Kang Xiaowei, Tao Meng, R. He
{"title":"Data Analysis of Magnetic Flux Leakage Detection Based on Multi-Source Information Fusion","authors":"Shao Weilin, Ming Sun, Ma Yilai, Chen Jinzhong, Kang Xiaowei, Tao Meng, R. He","doi":"10.3233/saem200033","DOIUrl":null,"url":null,"abstract":"For the analysis of the magnetic flux leakage detection data in pipelines, a single information source data analysis method is used to determine the pipeline characteristics with uncertainty. A multi-source information fusion data analysis technology is proposed. This paper makes full use of the information collected by the multi-source sensors of the magnetic leakage internal detector, and adopts distributed and centralized multi-source information fusion analysis technology. First, pre-analyze and judge the information data of the auxiliary sensors (speed, pressure, temperature) of the internal magnetic flux leakage detector. Then, the data of the main sensor, ID / OD sensor, axial mileage sensor, and circumferential clock sensor of the magnetic flux leakage detector are analyzed separately. Finally, the RBF neural network + least squares support vector machine (LSSVM)fusion analysis technology is adopted to realize the fusion analysis of multi-source information. The results show that this method can effectively improve the quality and reliability of data analysis compared with traditional single information source data analysis.","PeriodicalId":296740,"journal":{"name":"Studies in Applied Electromagnetics and Mechanics","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Electromagnetics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/saem200033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

For the analysis of the magnetic flux leakage detection data in pipelines, a single information source data analysis method is used to determine the pipeline characteristics with uncertainty. A multi-source information fusion data analysis technology is proposed. This paper makes full use of the information collected by the multi-source sensors of the magnetic leakage internal detector, and adopts distributed and centralized multi-source information fusion analysis technology. First, pre-analyze and judge the information data of the auxiliary sensors (speed, pressure, temperature) of the internal magnetic flux leakage detector. Then, the data of the main sensor, ID / OD sensor, axial mileage sensor, and circumferential clock sensor of the magnetic flux leakage detector are analyzed separately. Finally, the RBF neural network + least squares support vector machine (LSSVM)fusion analysis technology is adopted to realize the fusion analysis of multi-source information. The results show that this method can effectively improve the quality and reliability of data analysis compared with traditional single information source data analysis.
基于多源信息融合的漏磁检测数据分析
对于管道漏磁检测数据的分析,采用单信息源数据分析方法,确定具有不确定性的管道特征。提出了一种多源信息融合数据分析技术。本文充分利用漏磁探测仪多源传感器采集的信息,采用分布式、集中式多源信息融合分析技术。首先,对内漏磁检测器的辅助传感器(速度、压力、温度)的信息数据进行预分析和判断。然后,分别对漏磁检测器的主传感器、内径/外径传感器、轴向里程传感器和周向时钟传感器的数据进行分析。最后,采用RBF神经网络+最小二乘支持向量机(LSSVM)融合分析技术,实现多源信息的融合分析。结果表明,与传统的单一信息源数据分析相比,该方法能有效提高数据分析的质量和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信