Mapping the Unseen: Exploiting Super-Resolution for Semantic Segmentation in Low-Resolution Images

M. B. Pereira, J. D. Santos
{"title":"Mapping the Unseen: Exploiting Super-Resolution for Semantic Segmentation in Low-Resolution Images","authors":"M. B. Pereira, J. D. Santos","doi":"10.5753/SIBGRAPI.EST.2020.12987","DOIUrl":null,"url":null,"abstract":"High-resolution aerial images are usually not accessible or affordable. On the other hand, low-resolution remote sensing data is easily found in public open repositories. The problem is that the low-resolution representation can compromise pattern recognition algorithms, especially semantic segmentation. In this M.Sc. dissertation1 , we design two frameworks in order to evaluate the effectiveness of super-resolution in the semantic segmentation of low-resolution remote sensing images. We carried out an extensive set of experiments on different remote sensing datasets. The results show that super-resolution is effective to improve semantic segmentation performance on low-resolution aerial imagery, outperforming unsupervised interpolation and achieving semantic segmentation results comparable to highresolution data.","PeriodicalId":307185,"journal":{"name":"Anais Estendidos da Conference on Graphics, Patterns and Images (SIBRAPI Estendido 2020)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos da Conference on Graphics, Patterns and Images (SIBRAPI Estendido 2020)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/SIBGRAPI.EST.2020.12987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High-resolution aerial images are usually not accessible or affordable. On the other hand, low-resolution remote sensing data is easily found in public open repositories. The problem is that the low-resolution representation can compromise pattern recognition algorithms, especially semantic segmentation. In this M.Sc. dissertation1 , we design two frameworks in order to evaluate the effectiveness of super-resolution in the semantic segmentation of low-resolution remote sensing images. We carried out an extensive set of experiments on different remote sensing datasets. The results show that super-resolution is effective to improve semantic segmentation performance on low-resolution aerial imagery, outperforming unsupervised interpolation and achieving semantic segmentation results comparable to highresolution data.
映射看不见的:利用超分辨率在低分辨率图像的语义分割
高分辨率航空图像通常难以获得或负担不起。另一方面,低分辨率遥感数据很容易在公共开放存储库中找到。问题是低分辨率表示会影响模式识别算法,尤其是语义分割算法。在这篇硕士论文中,我们设计了两个框架来评估超分辨率在低分辨率遥感图像语义分割中的有效性。我们在不同的遥感数据集上进行了广泛的实验。结果表明,超分辨率能够有效提高低分辨率航拍图像的语义分割性能,优于无监督插值,获得与高分辨率数据相当的语义分割结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信