An Overview of Covariance‐based Change Detection Methodologies in Multivariate SAR Image Time Series

A. Mian, G. Ginolhac, J. Ovarlez, A. Breloy, F. Pascal
{"title":"An Overview of Covariance‐based Change Detection Methodologies in Multivariate SAR Image Time Series","authors":"A. Mian, G. Ginolhac, J. Ovarlez, A. Breloy, F. Pascal","doi":"10.1002/9781119882268.ch3","DOIUrl":null,"url":null,"abstract":"Change detection (CD) for remotely sensed images of the Earth has been a popular subject of study in the past decades. It has indeed attracted a plethora of scholars due to the various applications, in both military (activity monitoring) and civil (geophysics, disaster assessment, etc.) contexts. With the increase in the number of spatial missions with embedded synthetic aperture radar (SAR) sensors, the amount of readily available observations has now reached the “big data” era. To efficiently process and analyze this data, automatic algorithms have therefore to be developed. Notably, CD algorithms have been thoroughly investigated: the literature on the subject is dense, and a variety of methodologies can be envisioned1.","PeriodicalId":250214,"journal":{"name":"Change Detection and Image Time Series Analysis 1","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Change Detection and Image Time Series Analysis 1","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9781119882268.ch3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Change detection (CD) for remotely sensed images of the Earth has been a popular subject of study in the past decades. It has indeed attracted a plethora of scholars due to the various applications, in both military (activity monitoring) and civil (geophysics, disaster assessment, etc.) contexts. With the increase in the number of spatial missions with embedded synthetic aperture radar (SAR) sensors, the amount of readily available observations has now reached the “big data” era. To efficiently process and analyze this data, automatic algorithms have therefore to be developed. Notably, CD algorithms have been thoroughly investigated: the literature on the subject is dense, and a variety of methodologies can be envisioned1.
多元SAR图像时间序列中基于协方差的变化检测方法综述
近几十年来,地球遥感影像的变化检测一直是一个热门的研究课题。由于在军事(活动监测)和民用(地球物理、灾害评估等)方面的各种应用,它确实吸引了大量的学者。随着嵌入合成孔径雷达(SAR)传感器的空间任务数量的增加,现成的观测量现已进入“大数据”时代。因此,为了有效地处理和分析这些数据,必须开发自动算法。值得注意的是,CD算法已经得到了彻底的研究:关于这个主题的文献是密集的,并且可以设想各种方法1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信