Interactive Visual Data Mining of a Large Fire Detector Database

SeungJin Lim
{"title":"Interactive Visual Data Mining of a Large Fire Detector Database","authors":"SeungJin Lim","doi":"10.1109/ICISA.2010.5480395","DOIUrl":null,"url":null,"abstract":"As sensor networks become ubiquitous, the need for data mining of sensor network data is gaining momentum. Sensor network data is typically large, noisy and imbalanced, which makes it challenging to build a robust model from the data. In addition, traditional data mining often requires postmortem processing of the resulting statistically significant patterns to identify interesting patterns by means of visualization. For this reason, interactive visual data mining is employed for mining patterns from the fire detector dataset of the National Fire Incident Reporting System (NFIRS) database in this work. The suitability of interactive visual data mining, in place of its traditional counterpart, is demonstrated.","PeriodicalId":313762,"journal":{"name":"2010 International Conference on Information Science and Applications","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Information Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISA.2010.5480395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

As sensor networks become ubiquitous, the need for data mining of sensor network data is gaining momentum. Sensor network data is typically large, noisy and imbalanced, which makes it challenging to build a robust model from the data. In addition, traditional data mining often requires postmortem processing of the resulting statistically significant patterns to identify interesting patterns by means of visualization. For this reason, interactive visual data mining is employed for mining patterns from the fire detector dataset of the National Fire Incident Reporting System (NFIRS) database in this work. The suitability of interactive visual data mining, in place of its traditional counterpart, is demonstrated.
大型火灾探测器数据库的交互式可视化数据挖掘
随着传感器网络的普及,对传感器网络数据进行数据挖掘的需求日益增长。传感器网络数据通常是庞大的、有噪声的和不平衡的,这使得从数据中建立一个鲁棒模型具有挑战性。此外,传统的数据挖掘通常需要对结果统计上显著的模式进行事后处理,以便通过可视化的方式识别有趣的模式。为此,本研究采用交互式可视化数据挖掘技术,从国家火灾事件报告系统(NFIRS)数据库的火灾探测器数据集中挖掘模式。演示了交互式可视化数据挖掘取代传统数据挖掘的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信