Learning the Latent Semantic Space for Ranking in Text Retrieval

Jun Yan, Shuicheng Yan, Ning Liu, Zheng Chen
{"title":"Learning the Latent Semantic Space for Ranking in Text Retrieval","authors":"Jun Yan, Shuicheng Yan, Ning Liu, Zheng Chen","doi":"10.1109/ICDM.2008.68","DOIUrl":null,"url":null,"abstract":"Subspace learning techniques for text analysis, such as latent semantic indexing (LSI), have been widely studied in the past decade. However, to our best knowledge, no previous study has leveraged the rank information for subspace learning in ranking tasks. In this paper, we propose a novel algorithm, called learning latent semantics for ranking (LLSR), to seek the optimal latent semantic space tailored to the ranking tasks. We first present a dual explanation for the classical latent semantic indexing (LSI) algorithm, namely learning the so-called latent semantic space (LSS) to encode the data information. Then, to handle the increasing amount of training data for the practical ranking tasks, we propose a novel objective function to derive the optimal LSS for ranking. Experimental results on two SMART sub-collections and a TREC dataset show that LLSR effectively improves the ranking performance compared with the classical LSI algorithm and ranking without subspace learning.","PeriodicalId":252958,"journal":{"name":"2008 Eighth IEEE International Conference on Data Mining","volume":"161 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Eighth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2008.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Subspace learning techniques for text analysis, such as latent semantic indexing (LSI), have been widely studied in the past decade. However, to our best knowledge, no previous study has leveraged the rank information for subspace learning in ranking tasks. In this paper, we propose a novel algorithm, called learning latent semantics for ranking (LLSR), to seek the optimal latent semantic space tailored to the ranking tasks. We first present a dual explanation for the classical latent semantic indexing (LSI) algorithm, namely learning the so-called latent semantic space (LSS) to encode the data information. Then, to handle the increasing amount of training data for the practical ranking tasks, we propose a novel objective function to derive the optimal LSS for ranking. Experimental results on two SMART sub-collections and a TREC dataset show that LLSR effectively improves the ranking performance compared with the classical LSI algorithm and ranking without subspace learning.
基于潜在语义空间的文本检索排序学习
用于文本分析的子空间学习技术,如潜在语义索引(LSI),在过去十年得到了广泛的研究。然而,据我们所知,目前还没有研究利用子空间学习的排名信息来完成排名任务。在本文中,我们提出了一种新的算法,称为学习潜在语义排序(LLSR),以寻求适合排序任务的最优潜在语义空间。我们首先对经典的潜在语义索引(LSI)算法提出了双重解释,即学习所谓的潜在语义空间(LSS)来编码数据信息。然后,为了处理实际排序任务中不断增加的训练数据,我们提出了一种新的目标函数来推导最优排序LSS。在两个SMART子集合和一个TREC数据集上的实验结果表明,与经典LSI算法和不进行子空间学习的排序相比,LLSR算法有效地提高了排序性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信