{"title":"Advanced Zig-Zag Beam Theories for Sandwich Structures Analyses","authors":"M. Filippi, E. Carrera","doi":"10.1115/IMECE2018-86783","DOIUrl":null,"url":null,"abstract":"This work aims at evaluating the capabilities of several higher-order beam formulations for stress and dynamic analyses of layered sandwich structures. The structural models are conceived within the framework of the Carrera Unified Formulation (CUF) that allows one to generate (and compare) an infinite number of displacement fields. The number and the type of functions that are selected to generate the kinematic expansions are input parameters of the problem. Besides the well-known Taylor- and Lagrange-type expansions, great attention is paid to a new class of advanced higher-order zig-zag theories, which are written as combinations of continuous piecewise polynomial functions. Numerical simulations are performed on laminated and sandwich beams with very low length-to-depth ratio values. Also, structures with soft layers made of viscoelastic materials are considered to investigate the different dissipation mechanisms.","PeriodicalId":119220,"journal":{"name":"Volume 1: Advances in Aerospace Technology","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Advances in Aerospace Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-86783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This work aims at evaluating the capabilities of several higher-order beam formulations for stress and dynamic analyses of layered sandwich structures. The structural models are conceived within the framework of the Carrera Unified Formulation (CUF) that allows one to generate (and compare) an infinite number of displacement fields. The number and the type of functions that are selected to generate the kinematic expansions are input parameters of the problem. Besides the well-known Taylor- and Lagrange-type expansions, great attention is paid to a new class of advanced higher-order zig-zag theories, which are written as combinations of continuous piecewise polynomial functions. Numerical simulations are performed on laminated and sandwich beams with very low length-to-depth ratio values. Also, structures with soft layers made of viscoelastic materials are considered to investigate the different dissipation mechanisms.