{"title":"A hybrid method for network traffic classification","authors":"Hui Dong, Guang-Lu Sun, Dandan Li","doi":"10.1109/MIC.2013.6758047","DOIUrl":null,"url":null,"abstract":"In response to the growing requirements of traffic classification for increasing complex network environment, this paper introduces a hybrid method for network traffic classification. By combining port-based, signature string matching, regular expression matching and machine learning methods, our method can achieve high speed and accurate traffic classification. Moreover, a typical application of our method is proposed to identify encrypted traffic in high performance, which achieves 96.0% average accuracy. The experimental results show that our proposed method is able to achieve over 95.0% average accuracy for all experimental traces.","PeriodicalId":404630,"journal":{"name":"Proceedings of 2013 2nd International Conference on Measurement, Information and Control","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2013 2nd International Conference on Measurement, Information and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIC.2013.6758047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In response to the growing requirements of traffic classification for increasing complex network environment, this paper introduces a hybrid method for network traffic classification. By combining port-based, signature string matching, regular expression matching and machine learning methods, our method can achieve high speed and accurate traffic classification. Moreover, a typical application of our method is proposed to identify encrypted traffic in high performance, which achieves 96.0% average accuracy. The experimental results show that our proposed method is able to achieve over 95.0% average accuracy for all experimental traces.