Improved Fuzzy Rank Aggregation

M. Z. Ansari, M. Beg
{"title":"Improved Fuzzy Rank Aggregation","authors":"M. Z. Ansari, M. Beg","doi":"10.4018/IJRSDA.2018100105","DOIUrl":null,"url":null,"abstract":"Rank aggregation is applied on the web to build various applications like meta-search engines, consumer reviews classification, and recommender systems. Meta-searching is the generation of a single list from a collection of the results produced by multiple search engines, together using a rank aggregation technique. It is an efficient and cost-effective technique to retrieve quality results from the internet. The quality of results produced by a meta-searching relies upon the efficiency of rank aggregation technique applied. An effective rank aggregation technique assigns the rank to a document that is closest to all its previous rankings. The newly generated list of documents may be evaluated by the measurement of Spearman footrule distance. In this article, various fuzzy logic techniques for rank aggregation are analyzed and further improvements are proposed in Modified Shimura technique. Consequently, two novel OWA operators are suggested for the calculation of membership values of document ranks in a modified Shimura technique. The performance of proposed improvements is evaluated on the Spearman footrule distance along with execution time. The results show that the anticipated improvements exhibit better performance than other fuzzy techniques.","PeriodicalId":152357,"journal":{"name":"Int. J. Rough Sets Data Anal.","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Rough Sets Data Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJRSDA.2018100105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Rank aggregation is applied on the web to build various applications like meta-search engines, consumer reviews classification, and recommender systems. Meta-searching is the generation of a single list from a collection of the results produced by multiple search engines, together using a rank aggregation technique. It is an efficient and cost-effective technique to retrieve quality results from the internet. The quality of results produced by a meta-searching relies upon the efficiency of rank aggregation technique applied. An effective rank aggregation technique assigns the rank to a document that is closest to all its previous rankings. The newly generated list of documents may be evaluated by the measurement of Spearman footrule distance. In this article, various fuzzy logic techniques for rank aggregation are analyzed and further improvements are proposed in Modified Shimura technique. Consequently, two novel OWA operators are suggested for the calculation of membership values of document ranks in a modified Shimura technique. The performance of proposed improvements is evaluated on the Spearman footrule distance along with execution time. The results show that the anticipated improvements exhibit better performance than other fuzzy techniques.
改进的模糊等级聚合
排名聚合在网络上被应用于构建各种应用程序,如元搜索引擎、消费者评论分类和推荐系统。元搜索是从多个搜索引擎产生的结果集合中生成单个列表,同时使用秩聚合技术。从互联网上检索高质量的结果是一种高效和经济的技术。结果由一个元搜索的质量依赖于排名聚合技术应用的效率。一种有效的排名聚合技术将排名分配给最接近其所有先前排名的文档。新生成的文件列表可能会评估的斯皮尔曼简捷法测量的距离。本文对各种模糊逻辑技术进行了分析,并对改进Shimura技术进行了进一步的改进。因此,在改进的Shimura技术中,提出了两种新的OWA算子用于计算文档等级的隶属度值。所提出的改进性能是在Spearman脚距和执行时间上进行评估的。结果表明,预期改进比其他模糊技术具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信