Zimu Zeng, Pengchang Zhang, Jia Wang, Xingjia Tang, Xuebin Liu
{"title":"Chinese Character Font Classification in Calligraphy and Painting Works Based on Decision Fusion","authors":"Zimu Zeng, Pengchang Zhang, Jia Wang, Xingjia Tang, Xuebin Liu","doi":"10.1109/WI-IAT55865.2022.00117","DOIUrl":null,"url":null,"abstract":"Font recognition is an important part in the field of painting and calligraphy style recognition. Traditional font classification methods are mainly based on texture feature extraction and other methods, which need to be improved in classification accuracy. The mainstream classification methods mainly use convolutional neural networks, but such methods have poor interpretability and may face the problem that some detailed features cannot be accurately extracted. Based on convolutional neural network, the gray-level images, Local Binary Pattern (LBP) feature and Histogram of Oriented Gradient (HOG) of the images in the font dataset are respectively trained. Finally, the results of the three networks are fused by means of average decision fusion. The experimental results of font recognition show that the proposed method can extract the detailed features of fonts more accurately and obtain higher classification accuracy.","PeriodicalId":345445,"journal":{"name":"2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT55865.2022.00117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Font recognition is an important part in the field of painting and calligraphy style recognition. Traditional font classification methods are mainly based on texture feature extraction and other methods, which need to be improved in classification accuracy. The mainstream classification methods mainly use convolutional neural networks, but such methods have poor interpretability and may face the problem that some detailed features cannot be accurately extracted. Based on convolutional neural network, the gray-level images, Local Binary Pattern (LBP) feature and Histogram of Oriented Gradient (HOG) of the images in the font dataset are respectively trained. Finally, the results of the three networks are fused by means of average decision fusion. The experimental results of font recognition show that the proposed method can extract the detailed features of fonts more accurately and obtain higher classification accuracy.