Machine Learning Algorithms for Traffic Interruption Detection

Yashaswi Karnati, D. Mahajan, A. Rangarajan, S. Ranka
{"title":"Machine Learning Algorithms for Traffic Interruption Detection","authors":"Yashaswi Karnati, D. Mahajan, A. Rangarajan, S. Ranka","doi":"10.1109/FMEC49853.2020.9144876","DOIUrl":null,"url":null,"abstract":"Detection of traffic interruptions is a critical aspect of managing traffic on urban road networks. This work outlines a semi-supervised strategy to automatically detect traffic interruptions occurring on arteries using high resolution data from widely deployed inductive loop detectors. The techniques highlighted in this paper are tested on data collected from detectors installed on more than 300 signalized intersections over a 6 month period. Our results show that we can detect interruptions with high precision and recall.","PeriodicalId":110283,"journal":{"name":"2020 Fifth International Conference on Fog and Mobile Edge Computing (FMEC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Fifth International Conference on Fog and Mobile Edge Computing (FMEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FMEC49853.2020.9144876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detection of traffic interruptions is a critical aspect of managing traffic on urban road networks. This work outlines a semi-supervised strategy to automatically detect traffic interruptions occurring on arteries using high resolution data from widely deployed inductive loop detectors. The techniques highlighted in this paper are tested on data collected from detectors installed on more than 300 signalized intersections over a 6 month period. Our results show that we can detect interruptions with high precision and recall.
交通中断检测的机器学习算法
交通中断检测是城市道路网络交通管理的一个重要方面。这项工作概述了一种半监督策略,使用广泛部署的电感环路检测器的高分辨率数据自动检测发生在动脉上的交通中断。在6个月的时间里,从安装在300多个信号交叉口的探测器收集的数据中测试了本文中强调的技术。我们的研究结果表明,我们能够以较高的准确率和召回率检测中断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信