{"title":"Optimal HVAC Scheduling under Temperature Uncertainty using the Wasserstein Metric","authors":"Guanyu Tian, Q. Sun","doi":"10.1109/PESGM48719.2022.9916922","DOIUrl":null,"url":null,"abstract":"The heating, ventilation and air condition (HVAC) system consumes the most energy in commercial buildings, consisting over 60% of total energy usage in the U.S. Flexible HVAC system setpoint scheduling could potentially save building energy costs. This paper proposes a distributionally robust optimal (DRO) HVAC scheduling method that minimizes the daily operation cost with constraints of indoor air temperature comfort and mechanic operating requirement. Considering the uncertainties from ambient temperature, a Wasserstein metric-based ambiguity set is adopted to enhance the robustness against probabilistic prediction errors. The schedule is optimized under the worst-case distribution within the ambiguity set. The proposed DRO method is initially formulated as a two-stage problem and then reformulated into a tractable mixed-integer linear programming (MILP) form. The paper evaluates the feasibility and optimality of the optimized schedules for a real commercial building. The numerical results indicate that the costs of the proposed DRO method are up to 6.6% lower compared with conventional techniques of optimization under uncertainties. They also provide granular risk-benefit options for decision-makinz in demand response programs.","PeriodicalId":388672,"journal":{"name":"2022 IEEE Power & Energy Society General Meeting (PESGM)","volume":"58-60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Power & Energy Society General Meeting (PESGM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESGM48719.2022.9916922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The heating, ventilation and air condition (HVAC) system consumes the most energy in commercial buildings, consisting over 60% of total energy usage in the U.S. Flexible HVAC system setpoint scheduling could potentially save building energy costs. This paper proposes a distributionally robust optimal (DRO) HVAC scheduling method that minimizes the daily operation cost with constraints of indoor air temperature comfort and mechanic operating requirement. Considering the uncertainties from ambient temperature, a Wasserstein metric-based ambiguity set is adopted to enhance the robustness against probabilistic prediction errors. The schedule is optimized under the worst-case distribution within the ambiguity set. The proposed DRO method is initially formulated as a two-stage problem and then reformulated into a tractable mixed-integer linear programming (MILP) form. The paper evaluates the feasibility and optimality of the optimized schedules for a real commercial building. The numerical results indicate that the costs of the proposed DRO method are up to 6.6% lower compared with conventional techniques of optimization under uncertainties. They also provide granular risk-benefit options for decision-makinz in demand response programs.