Masahiro Sato, Janmajay Singh, S. Takemori, Takashi Sonoda, Qian Zhang, T. Ohkuma
{"title":"Uplift-based evaluation and optimization of recommenders","authors":"Masahiro Sato, Janmajay Singh, S. Takemori, Takashi Sonoda, Qian Zhang, T. Ohkuma","doi":"10.1145/3298689.3347018","DOIUrl":null,"url":null,"abstract":"Recommender systems aim to increase user actions such as clicks and purchases. Typical evaluations of recommenders regard the purchase of a recommended item as a success. However, the item may have been purchased even without the recommendation. An uplift is defined as an increase in user actions caused by recommendations. Situations with and without a recommendation cannot both be observed for a specific user-item pair at a given time instance, making uplift-based evaluation and optimization challenging. This paper proposes new evaluation metrics and optimization methods for the uplift in a recommender system. We apply a causal inference framework to estimate the average uplift for the offline evaluation of recommenders. Our evaluation protocol leverages both purchase and recommendation logs under a currently deployed recommender system, to simulate the cases both with and without recommendations. This enables the offline evaluation of the uplift for newly generated recommendation lists. For optimization, we need to define positive and negative samples that are specific to an uplift-based approach. For this purpose, we deduce four classes of items by observing purchase and recommendation logs. We derive the relative priorities among these four classes in terms of the uplift and use them to construct both pointwise and pairwise sampling methods for uplift optimization. Through dedicated experiments with three public datasets, we demonstrate the effectiveness of our optimization methods in improving the uplift.","PeriodicalId":215384,"journal":{"name":"Proceedings of the 13th ACM Conference on Recommender Systems","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3298689.3347018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
Abstract
Recommender systems aim to increase user actions such as clicks and purchases. Typical evaluations of recommenders regard the purchase of a recommended item as a success. However, the item may have been purchased even without the recommendation. An uplift is defined as an increase in user actions caused by recommendations. Situations with and without a recommendation cannot both be observed for a specific user-item pair at a given time instance, making uplift-based evaluation and optimization challenging. This paper proposes new evaluation metrics and optimization methods for the uplift in a recommender system. We apply a causal inference framework to estimate the average uplift for the offline evaluation of recommenders. Our evaluation protocol leverages both purchase and recommendation logs under a currently deployed recommender system, to simulate the cases both with and without recommendations. This enables the offline evaluation of the uplift for newly generated recommendation lists. For optimization, we need to define positive and negative samples that are specific to an uplift-based approach. For this purpose, we deduce four classes of items by observing purchase and recommendation logs. We derive the relative priorities among these four classes in terms of the uplift and use them to construct both pointwise and pairwise sampling methods for uplift optimization. Through dedicated experiments with three public datasets, we demonstrate the effectiveness of our optimization methods in improving the uplift.