Nashid Shahriar, Reaz Ahmed, Aimal Khan, S. R. Chowdhury, R. Boutaba, J. Mitra
{"title":"ReNoVatE: Recovery from node failure in virtual network embedding","authors":"Nashid Shahriar, Reaz Ahmed, Aimal Khan, S. R. Chowdhury, R. Boutaba, J. Mitra","doi":"10.1109/CNSM.2016.7818396","DOIUrl":null,"url":null,"abstract":"Network visualization (NV) has evolved as a key enabling technology for offering the next generation network services. Recently, it is being rolled out in data center networks as a means to provide bandwidth guarantees to cloud applications. With increasing deployments of virtual networks (VNs) in commercial-grade networks with commodity hardware, VNs need to tackle failures in the underlying substrate network. In this paper, we study the problem of recovering a batch of VNs affected by a substrate node failure. The combinatorial possibilities of alternate embeddings of the failed virtual nodes and links of the VNs makes the task of finding the most efficient recovery both non-trivial and intractable. Furthermore, any recovery approach ideally should not cause any service disruption for the unaffected parts of the VNs. We take into account these issues to design a recovery approach for maximizing recovery and minimizing the cost of recovery and network disruption. We provide an Integer Linear Programming (ILP) formulation of our recovery scheme. We also propose a fast and scalable heuristic algorithm to tackle the computational complexity of the ILP solution. Evaluation results demonstrate that our heuristic performs close to the optimal solution and outperforms the state-of-the-art algorithm.","PeriodicalId":334604,"journal":{"name":"2016 12th International Conference on Network and Service Management (CNSM)","volume":"178 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th International Conference on Network and Service Management (CNSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNSM.2016.7818396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Network visualization (NV) has evolved as a key enabling technology for offering the next generation network services. Recently, it is being rolled out in data center networks as a means to provide bandwidth guarantees to cloud applications. With increasing deployments of virtual networks (VNs) in commercial-grade networks with commodity hardware, VNs need to tackle failures in the underlying substrate network. In this paper, we study the problem of recovering a batch of VNs affected by a substrate node failure. The combinatorial possibilities of alternate embeddings of the failed virtual nodes and links of the VNs makes the task of finding the most efficient recovery both non-trivial and intractable. Furthermore, any recovery approach ideally should not cause any service disruption for the unaffected parts of the VNs. We take into account these issues to design a recovery approach for maximizing recovery and minimizing the cost of recovery and network disruption. We provide an Integer Linear Programming (ILP) formulation of our recovery scheme. We also propose a fast and scalable heuristic algorithm to tackle the computational complexity of the ILP solution. Evaluation results demonstrate that our heuristic performs close to the optimal solution and outperforms the state-of-the-art algorithm.