Piecewise smooth system identification in reproducing kernel Hilbert space

Fabien Lauer, G. Bloch
{"title":"Piecewise smooth system identification in reproducing kernel Hilbert space","authors":"Fabien Lauer, G. Bloch","doi":"10.1109/CDC.2014.7040408","DOIUrl":null,"url":null,"abstract":"The paper extends the recent approach of Ohlsson and Ljung for piecewise affine system identification to the nonlinear case while taking a clustering point of view. In this approach, the problem is cast as the minimization of a convex cost function implementing a trade-off between the fit to the data and a sparsity prior on the number of pieces. Here, we consider the nonlinear case of piecewise smooth system identification without prior knowledge on the type of nonlinearities involved. This is tackled by simultaneously learning a collection of local models from a reproducing kernel Hilbert space via the minimization of a convex functional, for which we prove a representer theorem that provides the explicit form of the solution. An example of application to piecewise smooth system identification shows that both the mode and the nonlinear local models can be accurately estimated.","PeriodicalId":202708,"journal":{"name":"53rd IEEE Conference on Decision and Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"53rd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2014.7040408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The paper extends the recent approach of Ohlsson and Ljung for piecewise affine system identification to the nonlinear case while taking a clustering point of view. In this approach, the problem is cast as the minimization of a convex cost function implementing a trade-off between the fit to the data and a sparsity prior on the number of pieces. Here, we consider the nonlinear case of piecewise smooth system identification without prior knowledge on the type of nonlinearities involved. This is tackled by simultaneously learning a collection of local models from a reproducing kernel Hilbert space via the minimization of a convex functional, for which we prove a representer theorem that provides the explicit form of the solution. An example of application to piecewise smooth system identification shows that both the mode and the nonlinear local models can be accurately estimated.
再现核希尔伯特空间中的分段光滑系统辨识
本文采用聚类的观点,将Ohlsson和Ljung最近的分段仿射系统辨识方法推广到非线性情况。在这种方法中,问题被视为最小化凸代价函数,实现了对数据的拟合和对碎片数量的稀疏性之间的权衡。这里,我们考虑的非线性情况下的分段光滑系统辨识不涉及的非线性类型的先验知识。这是通过同时从一个复制核希尔伯特空间学习局部模型的集合来解决的,通过最小化一个凸泛函,我们证明了一个提供显式解形式的表示定理。一个应用于分段光滑系统辨识的实例表明,该方法既能准确估计模态模型,也能准确估计非线性局部模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信