Optimal risk-sensitive controller for second degree stochastic polynomial systems

M.T. Torres, M. A. Alcorta-Garcia
{"title":"Optimal risk-sensitive controller for second degree stochastic polynomial systems","authors":"M.T. Torres, M. A. Alcorta-Garcia","doi":"10.1109/MMAR.2012.6347836","DOIUrl":null,"url":null,"abstract":"This paper presents the optimal risk-sensitive controller problem for second degree polynomial stochastic systems with a scaling intensity parameter, multiplying the diffusion term in the state, observations equations and exponential-quadratic cost function to be minimized. The optimal risk-sensitive controller equations are obtained based on the optimal risk-sensitive filtering and control equations for second degree polynomial systems and the separation principle for polynomial systems. The performance of the equations of the controller risk-sensitive of second grade equations is verified in a numerical example compared to the conventional bilinear-quadratic controller equations for second degree polynomial systems. The simulation results reveal significant advantages in the criterion values in favor of the designed risk-sensitive controller, for all values of the scaling parameter.","PeriodicalId":305110,"journal":{"name":"2012 17th International Conference on Methods & Models in Automation & Robotics (MMAR)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 17th International Conference on Methods & Models in Automation & Robotics (MMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR.2012.6347836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents the optimal risk-sensitive controller problem for second degree polynomial stochastic systems with a scaling intensity parameter, multiplying the diffusion term in the state, observations equations and exponential-quadratic cost function to be minimized. The optimal risk-sensitive controller equations are obtained based on the optimal risk-sensitive filtering and control equations for second degree polynomial systems and the separation principle for polynomial systems. The performance of the equations of the controller risk-sensitive of second grade equations is verified in a numerical example compared to the conventional bilinear-quadratic controller equations for second degree polynomial systems. The simulation results reveal significant advantages in the criterion values in favor of the designed risk-sensitive controller, for all values of the scaling parameter.
二阶随机多项式系统的最优风险敏感控制器
本文研究了二阶多项式随机系统的最优风险敏感控制器问题,该系统具有标度强度参数,在状态、观测方程和指数二次代价函数中乘上扩散项。基于二阶多项式系统的最优风险敏感滤波和控制方程以及多项式系统的分离原理,得到了最优风险敏感控制器方程。通过数值算例验证了二阶方程风险敏感控制器方程的性能,并与二阶多项式系统的常规双线性二次控制器方程进行了比较。仿真结果表明,对于标度参数的所有值,所设计的风险敏感控制器在准则值上都具有明显的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信