Algebraic methods in the theory of lower bounds for Boolean circuit complexity

R. Smolensky
{"title":"Algebraic methods in the theory of lower bounds for Boolean circuit complexity","authors":"R. Smolensky","doi":"10.1145/28395.28404","DOIUrl":null,"url":null,"abstract":"We use algebraic methods to get lower bounds for complexity of different functions based on constant depth unbounded fan-in circuits with the given set of basic operations. In particular, we prove that depth k circuits with gates NOT, OR and MODp where p is a prime require Exp(&Ogr;(n1/2k)) gates to calculate MODr functions for any r ≠ pm. This statement contains as special cases Yao's PARITY result [ Ya 85 ] and Razborov's new MAJORITY result [Ra 86] (MODm gate is an oracle which outputs zero, if the number of ones is divisible by m).","PeriodicalId":161795,"journal":{"name":"Proceedings of the nineteenth annual ACM symposium on Theory of computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"876","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the nineteenth annual ACM symposium on Theory of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/28395.28404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 876

Abstract

We use algebraic methods to get lower bounds for complexity of different functions based on constant depth unbounded fan-in circuits with the given set of basic operations. In particular, we prove that depth k circuits with gates NOT, OR and MODp where p is a prime require Exp(&Ogr;(n1/2k)) gates to calculate MODr functions for any r ≠ pm. This statement contains as special cases Yao's PARITY result [ Ya 85 ] and Razborov's new MAJORITY result [Ra 86] (MODm gate is an oracle which outputs zero, if the number of ones is divisible by m).
布尔电路复杂度下界理论中的代数方法
在给定一组基本运算条件下,利用代数方法求出了基于定深无界扇入电路的不同函数复杂度的下界。特别地,我们证明了深度k的电路具有NOT, OR和MODp,其中p是素数,需要Exp(&Ogr;(n1/2k))门来计算任意r≠pm时的MODr函数。该语句包含特殊情况Yao's PARITY结果[Ya 85]和Razborov's new MAJORITY结果[Ra 86](如果1的个数能被m整除,则MODm门是输出为零的预言器)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信