Wrapped Birnbaum-Saunders distribution: definition and estimation

Marley A. Saraiva, F. Cysneiros
{"title":"Wrapped Birnbaum-Saunders distribution: definition and estimation","authors":"Marley A. Saraiva, F. Cysneiros","doi":"10.5216/nm.v5.73341","DOIUrl":null,"url":null,"abstract":"In this work a new circular distribution called wrapped Birnbaum-Saunders was proposed. It was obtained by wrapping the classical Birnbaum Saunders distribution in a reparameterized form. For this distribution we have found expressions for theirprobability density function, distribution function and trigonometric moments. We show some properties of this new distribution and obtained the maximum likelihood estimators of its two parameters, in addition, we conducted a Monte Carlo simulation study to evaluate the performance of the maximum likelihood estimators of the parameters. We also made an application to a real dataset from the Rudolf Jander’s experiments concerning the direction chosen by ants in response to a stimulus and compare its estimates via Kuiper’s statistic with those obtained from the Von Mises and Asymmetric Von Mises models. This distribution is very promising as model for asymmetric directional data.","PeriodicalId":274755,"journal":{"name":"NEXUS Mathematicæ","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NEXUS Mathematicæ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5216/nm.v5.73341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work a new circular distribution called wrapped Birnbaum-Saunders was proposed. It was obtained by wrapping the classical Birnbaum Saunders distribution in a reparameterized form. For this distribution we have found expressions for theirprobability density function, distribution function and trigonometric moments. We show some properties of this new distribution and obtained the maximum likelihood estimators of its two parameters, in addition, we conducted a Monte Carlo simulation study to evaluate the performance of the maximum likelihood estimators of the parameters. We also made an application to a real dataset from the Rudolf Jander’s experiments concerning the direction chosen by ants in response to a stimulus and compare its estimates via Kuiper’s statistic with those obtained from the Von Mises and Asymmetric Von Mises models. This distribution is very promising as model for asymmetric directional data.
包裹Birnbaum-Saunders分布:定义和估计
在这项工作中,提出了一种新的圆形分布,称为包裹Birnbaum-Saunders。它是通过将经典的Birnbaum Saunders分布包裹在一个重参数化的形式中得到的。对于这个分布,我们已经找到了它们的概率密度函数、分布函数和三角矩的表达式。我们展示了这个新分布的一些性质,并得到了它的两个参数的极大似然估计量,此外,我们进行了蒙特卡罗模拟研究来评价参数的极大似然估计量的性能。我们还对Rudolf Jander关于蚂蚁响应刺激选择方向的实验的真实数据集进行了应用,并将其通过柯伊伯统计的估计与冯·米塞斯模型和非对称冯·米塞斯模型获得的估计进行了比较。这种分布很有希望作为非对称方向数据的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信