An Investigation of Parameter Optimization in Fingerling Counting Problems

Adair da Silva Oliveira Junior, M. Pache, Fábio Prestes Cesar Rezende, D. Sant’Ana, V. Weber, Gilberto Astolfi, F. Weber, G. Menezes, Gabriel Kirsten Menezes, Pedro Lucas França Albuquerque, Celso Soares Costa, Vanir Garcia, Eduardo Quirino Arguelho de Queiroz, João Victor Araújo Rozales, M. Ferreira, M. Naka, H. Pistori
{"title":"An Investigation of Parameter Optimization in Fingerling Counting Problems","authors":"Adair da Silva Oliveira Junior, M. Pache, Fábio Prestes Cesar Rezende, D. Sant’Ana, V. Weber, Gilberto Astolfi, F. Weber, G. Menezes, Gabriel Kirsten Menezes, Pedro Lucas França Albuquerque, Celso Soares Costa, Vanir Garcia, Eduardo Quirino Arguelho de Queiroz, João Victor Araújo Rozales, M. Ferreira, M. Naka, H. Pistori","doi":"10.5753/wvc.2021.18881","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to investigate which combination of parameters for the fingerling counting software results in the smallest Mean Absolute Error (MAE) and smallest Root Mean Squared Error (RMSE). For this, an image dataset called FISHCV155V was created and separated into training and test sets, where different combinations of parameters for the software were tested. From the obtained results were extracted individual performance metrics for each combination of parameters, such as MAE, Mean Square Error (MSE) and RMSE. Video frames were analysed comparing the parameter combination that obtained the best and worst results, in order to investigate the influence of such parameters in the performance of the software. From such results, it was concluded that the best combination reached 5.99 MAE and 9.96 RMSE.","PeriodicalId":311431,"journal":{"name":"Anais do XVII Workshop de Visão Computacional (WVC 2021)","volume":"343 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVII Workshop de Visão Computacional (WVC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/wvc.2021.18881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of this paper is to investigate which combination of parameters for the fingerling counting software results in the smallest Mean Absolute Error (MAE) and smallest Root Mean Squared Error (RMSE). For this, an image dataset called FISHCV155V was created and separated into training and test sets, where different combinations of parameters for the software were tested. From the obtained results were extracted individual performance metrics for each combination of parameters, such as MAE, Mean Square Error (MSE) and RMSE. Video frames were analysed comparing the parameter combination that obtained the best and worst results, in order to investigate the influence of such parameters in the performance of the software. From such results, it was concluded that the best combination reached 5.99 MAE and 9.96 RMSE.
鱼种计数问题中参数优化的研究
本文的目的是研究鱼种计数软件的哪种参数组合导致最小的平均绝对误差(MAE)和最小的均方根误差(RMSE)。为此,创建了一个名为FISHCV155V的图像数据集,并将其分为训练集和测试集,其中测试了软件的不同参数组合。从获得的结果中提取每个参数组合的单个性能指标,如MAE,均方误差(MSE)和RMSE。对视频帧进行了分析,比较了得到最佳和最差结果的参数组合,探讨了这些参数对软件性能的影响。结果表明,最佳组合MAE为5.99,RMSE为9.96。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信