Alaa Daoud, Flavien Balbo, Paolo Gianessi, Gauthier Picard
{"title":"AV-OLRA : Une modélisation générique pour le problème de l'allocation des ressources dans le domaine du transport à la demande","authors":"Alaa Daoud, Flavien Balbo, Paolo Gianessi, Gauthier Picard","doi":"10.5802/roia.61","DOIUrl":null,"url":null,"abstract":"Résumé. — Le développement de véhicules autonomes, capables de communiquer de pair à pair, ainsi que l’intérêt pour les solutions à la demande (par exemple, Uber, Lyft, Heetch), sont les principales motivations de cette étude. Le problème d’allocation des véhicules aux clients est d’une importance majeure dans la gestion des systèmes de transport à la demande (ODT). Il est étudié depuis des décennies, et diverses solutions ont été proposées. Les différentes familles de solutions peuvent être classées en deux caté-gories, centralisées et décentralisées avec dans la pratique, pour chacune ses avantages et ses inconvénients. Dans ce travail, nous visons à fournir un modèle générique pour le problème du transport à la demande en ligne avec des véhicules autonomes. Indépendant des solutions, ce modèle permet une description synthétique du problème et propose des indicateurs de qualité. Nous proposons également un modèle multi-agents dédié à l’allo-cation des ressources et à la planification de la flotte. Ce dernier considère des véhicules autonomes comme des agents qui communiquent dans un réseau inter-véhiculaire pour satisfaire les demandes de transport dans un système de transport à la demande selon la stratégie de résolution que l’utilisateur souhaite évaluer. Nous montrons la généricité de ce modèle en appliquant plusieurs approches d’allocation (optimisation linéaire en nombres entiers, approche gloutonne, enchères et optimisation sous contraintes distri-buée) et comparons en détail leurs performances en termes de qualité de solution et d’indicateurs techniques sur des scénarios générés à partir de données réelles. Mots-clés. — Systèmes multi-agents, Coordination, Transport à la demande, Allocation des ressources, Véhicules Autonomes Connectés, Simulation.","PeriodicalId":411724,"journal":{"name":"Revue Ouverte d'Intelligence Artificielle (ROIA)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revue Ouverte d'Intelligence Artificielle (ROIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/roia.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Résumé. — Le développement de véhicules autonomes, capables de communiquer de pair à pair, ainsi que l’intérêt pour les solutions à la demande (par exemple, Uber, Lyft, Heetch), sont les principales motivations de cette étude. Le problème d’allocation des véhicules aux clients est d’une importance majeure dans la gestion des systèmes de transport à la demande (ODT). Il est étudié depuis des décennies, et diverses solutions ont été proposées. Les différentes familles de solutions peuvent être classées en deux caté-gories, centralisées et décentralisées avec dans la pratique, pour chacune ses avantages et ses inconvénients. Dans ce travail, nous visons à fournir un modèle générique pour le problème du transport à la demande en ligne avec des véhicules autonomes. Indépendant des solutions, ce modèle permet une description synthétique du problème et propose des indicateurs de qualité. Nous proposons également un modèle multi-agents dédié à l’allo-cation des ressources et à la planification de la flotte. Ce dernier considère des véhicules autonomes comme des agents qui communiquent dans un réseau inter-véhiculaire pour satisfaire les demandes de transport dans un système de transport à la demande selon la stratégie de résolution que l’utilisateur souhaite évaluer. Nous montrons la généricité de ce modèle en appliquant plusieurs approches d’allocation (optimisation linéaire en nombres entiers, approche gloutonne, enchères et optimisation sous contraintes distri-buée) et comparons en détail leurs performances en termes de qualité de solution et d’indicateurs techniques sur des scénarios générés à partir de données réelles. Mots-clés. — Systèmes multi-agents, Coordination, Transport à la demande, Allocation des ressources, Véhicules Autonomes Connectés, Simulation.