Water bloom warning model based on random forest

Y. Liu, Hao Wu
{"title":"Water bloom warning model based on random forest","authors":"Y. Liu, Hao Wu","doi":"10.1109/ICIIBMS.2017.8279712","DOIUrl":null,"url":null,"abstract":"Based on the random forest classification algorithm, a warning model of water bloom is proposed. Using the collected data, Select the water quality, meteorological factors which like Chlorophyll a (Chl-a), water temperature (T), PH, nitrogen and phosphorus ratio (TN:TP), chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP), dissolved oxygen Light (E) and so on as the impact factor and use them establish a warning model for Water bloom. And compared with the prediction accuracy of neural network model and SVM model. The results show that the water bloom warning model is established by using stochastic forest classification algorithm, the prediction accuracy is slightly higher than other algorithms. And the random forest algorithm has the characteristics of high robustness, China good performance, strong practicability, can effectively carry out water bloom early warning.","PeriodicalId":122969,"journal":{"name":"2017 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIIBMS.2017.8279712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Based on the random forest classification algorithm, a warning model of water bloom is proposed. Using the collected data, Select the water quality, meteorological factors which like Chlorophyll a (Chl-a), water temperature (T), PH, nitrogen and phosphorus ratio (TN:TP), chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP), dissolved oxygen Light (E) and so on as the impact factor and use them establish a warning model for Water bloom. And compared with the prediction accuracy of neural network model and SVM model. The results show that the water bloom warning model is established by using stochastic forest classification algorithm, the prediction accuracy is slightly higher than other algorithms. And the random forest algorithm has the characteristics of high robustness, China good performance, strong practicability, can effectively carry out water bloom early warning.
基于随机森林的水华预警模型
基于随机森林分类算法,提出了一种水华预警模型。利用收集到的数据,选取水质、叶绿素a (Chl-a)、水温(T)、PH、氮磷比(TN:TP)、化学需氧量(COD)、总氮(TN)、总磷(TP)、溶解氧光(E)等气象因子作为影响因子,建立水华预警模型。并与神经网络模型和支持向量机模型的预测精度进行了比较。结果表明,采用随机森林分类算法建立了水华预警模型,预测精度略高于其他算法。而随机森林算法具有鲁棒性高、中国性能好、实用性强的特点,可以有效地进行水华预警。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信