Aggregated Context Network For Semantic Segmentation Of Aerial Images

A. Chouhan, A. Sur, D. Chutia
{"title":"Aggregated Context Network For Semantic Segmentation Of Aerial Images","authors":"A. Chouhan, A. Sur, D. Chutia","doi":"10.1109/ICIP46576.2022.9898016","DOIUrl":null,"url":null,"abstract":"With the considerable advancement of remote sensing technology and computer vision, automatic scene understanding for very high-resolution aerial (VHR) imagery became a necessary research topic. Semantic segmentation of VHR imagery is an important task where context information plays a crucial role. Adequate feature delineation is difficult due to high-class imbalance in remotely sensed data. In this work, we proposed a variant of encoder-decoder-based architecture where residual attentive skip connections are incorporated. We added a multi-context block in each of the encoder units to capture multi-scale and multi-context features and used dense connections for effective feature extraction. A comprehensive set of experiments reveal that the proposed scheme outperformed recently published work by 3% in overall accuracy and F1 score for ISPRS Vaihingen and ISPRS Potsdam benchmark datasets.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9898016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the considerable advancement of remote sensing technology and computer vision, automatic scene understanding for very high-resolution aerial (VHR) imagery became a necessary research topic. Semantic segmentation of VHR imagery is an important task where context information plays a crucial role. Adequate feature delineation is difficult due to high-class imbalance in remotely sensed data. In this work, we proposed a variant of encoder-decoder-based architecture where residual attentive skip connections are incorporated. We added a multi-context block in each of the encoder units to capture multi-scale and multi-context features and used dense connections for effective feature extraction. A comprehensive set of experiments reveal that the proposed scheme outperformed recently published work by 3% in overall accuracy and F1 score for ISPRS Vaihingen and ISPRS Potsdam benchmark datasets.
基于聚合上下文网络的航空图像语义分割
随着遥感技术和计算机视觉技术的长足进步,高分辨率航空影像的场景自动理解成为一个必要的研究课题。VHR图像的语义分割是一项重要的任务,其中上下文信息起着至关重要的作用。由于遥感数据的高度不平衡,难以进行充分的特征圈定。在这项工作中,我们提出了一种基于编码器-解码器的架构的变体,其中包含了剩余的注意跳过连接。我们在每个编码器单元中添加了一个多上下文块来捕获多尺度和多上下文特征,并使用密集连接进行有效的特征提取。一组综合实验表明,该方案在ISPRS Vaihingen和ISPRS Potsdam基准数据集上的总体准确性和F1分数比最近发表的工作高出3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信