Multi-vehicle autonomous sampling of a coastal thermal and effluent jet and plume

M. Gildner, G. Weymouth, N. Patrikalakis
{"title":"Multi-vehicle autonomous sampling of a coastal thermal and effluent jet and plume","authors":"M. Gildner, G. Weymouth, N. Patrikalakis","doi":"10.1109/OCEANS.2012.6405093","DOIUrl":null,"url":null,"abstract":"Adaptive sampling algorithms and behavior-based approaches can aid in the rapid and accurate in-situ measurement and characterization of coastal environmental features such as industrial thermal effluent jets and plumes. To enable the development of these techniques we present a collection of simulation, estimation, and field tools for use within the Mission Oriented Operations Suite (MOOS). Key features include a multiparameter model of thermal effluent jets and plumes, simulated annealing parameter estimation, and a multi-sensor indicator function. Using these tools, an adaptive multi-vehicle transect sampling behavior is implemented to efficiently sample an industrial jet. The capabilities of this behavior are demonstrated in realistic mission simulations and in field trials using a fleet of autonomous surface vehicles.","PeriodicalId":434023,"journal":{"name":"2012 Oceans","volume":"555 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Oceans","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS.2012.6405093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Adaptive sampling algorithms and behavior-based approaches can aid in the rapid and accurate in-situ measurement and characterization of coastal environmental features such as industrial thermal effluent jets and plumes. To enable the development of these techniques we present a collection of simulation, estimation, and field tools for use within the Mission Oriented Operations Suite (MOOS). Key features include a multiparameter model of thermal effluent jets and plumes, simulated annealing parameter estimation, and a multi-sensor indicator function. Using these tools, an adaptive multi-vehicle transect sampling behavior is implemented to efficiently sample an industrial jet. The capabilities of this behavior are demonstrated in realistic mission simulations and in field trials using a fleet of autonomous surface vehicles.
多车辆自主采样的沿海热和流出射流和羽
自适应采样算法和基于行为的方法可以帮助快速准确的现场测量和表征沿海环境特征,如工业热排放射流和羽流。为了实现这些技术的发展,我们提出了一套模拟、评估和现场工具,用于任务导向操作套件(MOOS)。主要功能包括热流出射流和羽流的多参数模型,模拟退火参数估计,以及多传感器指示函数。利用这些工具,实现了自适应多车辆样条采样行为,以有效地对工业射流进行采样。这种行为的能力在现实任务模拟和使用自动水面车辆车队的现场试验中得到了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信