Multiple confusion network application in MT system combination

Yupeng Liu, Lemao Liu, Chunguang Ma, Shui Liu
{"title":"Multiple confusion network application in MT system combination","authors":"Yupeng Liu, Lemao Liu, Chunguang Ma, Shui Liu","doi":"10.1109/ICCSN.2015.7296128","DOIUrl":null,"url":null,"abstract":"System combination has emerged as a powerful method for machine translation (MT). In the construction of word level confusion network (CN), the alignment and skeleton selection are two key issues of system combination. The paper introduces multi-CN for solving skeleton selection. We fail to yield the better performance through using simple prior score as CN-based feature, so we introduce more sophisticated CN-based and consensus-decoding-based features into combination framework to test multi-CN's validity. The approaches of multi-CN are shown to be superior to single-CN in the setting of the Chinese-to-English track of the 2008 NIST Open MT evaluation.","PeriodicalId":319517,"journal":{"name":"2015 IEEE International Conference on Communication Software and Networks (ICCSN)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Communication Software and Networks (ICCSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSN.2015.7296128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

System combination has emerged as a powerful method for machine translation (MT). In the construction of word level confusion network (CN), the alignment and skeleton selection are two key issues of system combination. The paper introduces multi-CN for solving skeleton selection. We fail to yield the better performance through using simple prior score as CN-based feature, so we introduce more sophisticated CN-based and consensus-decoding-based features into combination framework to test multi-CN's validity. The approaches of multi-CN are shown to be superior to single-CN in the setting of the Chinese-to-English track of the 2008 NIST Open MT evaluation.
多混淆网络在MT系统组合中的应用
系统组合已成为一种强有力的机器翻译方法。在词级混淆网络的构建中,对齐和骨架选择是系统组合的两个关键问题。本文介绍了解决骨架选择问题的多网络算法。使用简单的先验分数作为基于神经网络的特征无法获得更好的性能,因此我们在组合框架中引入更复杂的基于神经网络和基于共识解码的特征来测试多神经网络的有效性。在2008年NIST开放机器翻译评估的中英文轨道设置中,多cn方法优于单cn方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信