Facial Expression-Based Emotion Classification using Electrocardiogram and Respiration Signals

D. S. Wickramasuriya, Mikayla K. Tessmer, R. Faghih
{"title":"Facial Expression-Based Emotion Classification using Electrocardiogram and Respiration Signals","authors":"D. S. Wickramasuriya, Mikayla K. Tessmer, R. Faghih","doi":"10.1109/HI-POCT45284.2019.8962891","DOIUrl":null,"url":null,"abstract":"Automated emotion recognition from physiological signals is an ongoing research area. Many studies rely on self-reported emotion scores from subjects to generate classification labels. This can introduce labeling inconsistencies due to inter-subject variability. Facial expressions provide a more consistent means of generating labels. We generate labels by selecting locations at which subjects either displayed a visibly averse/negative reaction or laughed in video recordings. We next use a supervised learning approach for classifying these emotional responses based on electrocardiogram (EKG) and respiration signal features in an experiment where different movie/video clips were utilized to elicit feelings of joy, disgust, amusement, etc. As features, we extract wavelet coefficient patches from EKG RR-interval time series and respiration waveform parameters. We use principal component analysis for dimensionality reduction and support vector machines for classification. We achieved an overall classification accuracy of 78.3%.","PeriodicalId":269346,"journal":{"name":"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HI-POCT45284.2019.8962891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Automated emotion recognition from physiological signals is an ongoing research area. Many studies rely on self-reported emotion scores from subjects to generate classification labels. This can introduce labeling inconsistencies due to inter-subject variability. Facial expressions provide a more consistent means of generating labels. We generate labels by selecting locations at which subjects either displayed a visibly averse/negative reaction or laughed in video recordings. We next use a supervised learning approach for classifying these emotional responses based on electrocardiogram (EKG) and respiration signal features in an experiment where different movie/video clips were utilized to elicit feelings of joy, disgust, amusement, etc. As features, we extract wavelet coefficient patches from EKG RR-interval time series and respiration waveform parameters. We use principal component analysis for dimensionality reduction and support vector machines for classification. We achieved an overall classification accuracy of 78.3%.
基于面部表情的心电图和呼吸信号情绪分类
从生理信号中自动识别情绪是一个正在进行的研究领域。许多研究依赖于受试者自我报告的情绪得分来生成分类标签。这可能会由于主体间的可变性而导致标签不一致。面部表情提供了一种更一致的生成标签的方式。我们通过选择被试在录像中表现出明显厌恶/消极反应或大笑的地点来生成标签。接下来,我们使用一种监督学习方法,根据心电图(EKG)和呼吸信号特征对这些情绪反应进行分类,在一个实验中,不同的电影/视频片段被用来引发喜悦、厌恶、娱乐等感觉。作为特征,我们从心电图rr间隔时间序列和呼吸波形参数中提取小波系数补丁。我们使用主成分分析进行降维,使用支持向量机进行分类。我们实现了78.3%的总体分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信