Linear Programming Bounds on the Kissing Number of q-ary Codes

P. Solé, Yi Liu, Wei Cheng, S. Guilley, O. Rioul
{"title":"Linear Programming Bounds on the Kissing Number of q-ary Codes","authors":"P. Solé, Yi Liu, Wei Cheng, S. Guilley, O. Rioul","doi":"10.1109/ITW48936.2021.9611478","DOIUrl":null,"url":null,"abstract":"We use linear programming (LP) to derive upper and lower bounds on the “kissing number” $A_{d}$ of any q-ary linear code C with distance distribution frequencies $A_{i}$, in terms of the given parameters $[n,\\ k,\\ d]$. In particular, a polynomial method gives explicit analytic bounds in a certain range of parameters, which are sharp for some low-rate codes like the first-order Reed-Muller codes. The general LP bounds are more suited to numerical estimates. Besides the classical estimation of the probability of decoding error and of undetected error, we outline recent applications in hardware protection against side-channel attacks using code-based masking countermeasures, where the protection is all the more efficient a s the kissing number is low.","PeriodicalId":325229,"journal":{"name":"2021 IEEE Information Theory Workshop (ITW)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW48936.2021.9611478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We use linear programming (LP) to derive upper and lower bounds on the “kissing number” $A_{d}$ of any q-ary linear code C with distance distribution frequencies $A_{i}$, in terms of the given parameters $[n,\ k,\ d]$. In particular, a polynomial method gives explicit analytic bounds in a certain range of parameters, which are sharp for some low-rate codes like the first-order Reed-Muller codes. The general LP bounds are more suited to numerical estimates. Besides the classical estimation of the probability of decoding error and of undetected error, we outline recent applications in hardware protection against side-channel attacks using code-based masking countermeasures, where the protection is all the more efficient a s the kissing number is low.
q元码接吻数的线性规划界
我们利用线性规划(LP),根据给定的参数$[n,\ k,\ d]$,推导出距离分布频率$A_{i}$的任意q元线性码C的“接吻数”$A_{d}$的上界和下界。特别地,多项式方法给出了在一定参数范围内的显式解析界,这对于像一阶Reed-Muller码这样的低速率码是很明显的。一般LP界更适合于数值估计。除了经典的译码错误和未检测到的错误概率估计之外,我们概述了最近在使用基于代码的掩蔽对策的硬件保护中针对侧信道攻击的应用,其中保护在接吻数较低时更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信