Automatic Optimization of Localized Kernel Density Estimation for Hotspot Policing

Mohammad Al Boni, M. Gerber
{"title":"Automatic Optimization of Localized Kernel Density Estimation for Hotspot Policing","authors":"Mohammad Al Boni, M. Gerber","doi":"10.1109/ICMLA.2016.0015","DOIUrl":null,"url":null,"abstract":"Kernel density estimation is a popular method for identifying crime hotspots for the purpose of data-driven policing. However, computing a kernel density estimate is computationally intensive for large crime datasets, and the quality of the resulting estimate depends heavily on parameters that are difficult to set manually. Inspired by methods from image processing, we propose a novel way for performing hotspot analysis using localized kernel density estimation optimized with an evolutionary algorithm. The proposed method uses local learning to address three challenges associated with traditional kernel density estimation: computational complexity, bandwidth selection, and kernel function selection. We evaluate our localized kernel model on 17 crime types from Chicago, Illinois, USA. Preliminary results indicate significant improvement in prediction performance over the traditional approach. We also examine the effect of data sparseness on the performance of both models.","PeriodicalId":356182,"journal":{"name":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2016.0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Kernel density estimation is a popular method for identifying crime hotspots for the purpose of data-driven policing. However, computing a kernel density estimate is computationally intensive for large crime datasets, and the quality of the resulting estimate depends heavily on parameters that are difficult to set manually. Inspired by methods from image processing, we propose a novel way for performing hotspot analysis using localized kernel density estimation optimized with an evolutionary algorithm. The proposed method uses local learning to address three challenges associated with traditional kernel density estimation: computational complexity, bandwidth selection, and kernel function selection. We evaluate our localized kernel model on 17 crime types from Chicago, Illinois, USA. Preliminary results indicate significant improvement in prediction performance over the traditional approach. We also examine the effect of data sparseness on the performance of both models.
热点警务中局部核密度估计的自动优化
核密度估计是一种用于数据驱动警务目的的识别犯罪热点的流行方法。然而,对于大型犯罪数据集,计算核密度估计是计算密集型的,并且结果估计的质量严重依赖于难以手动设置的参数。受图像处理方法的启发,我们提出了一种利用进化算法优化的局部核密度估计进行热点分析的新方法。该方法利用局部学习方法解决了传统核密度估计存在的计算复杂度、带宽选择和核函数选择三个问题。以美国伊利诺伊州芝加哥市的17种犯罪类型为研究对象,对局部化核模型进行了评价。初步结果表明,与传统方法相比,该方法的预测性能有了显著提高。我们还研究了数据稀疏性对两种模型性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信