Adam G. M. Pazdor, C. Leung, Thomas J. Czubryt, Junyi Lu, Denys Popov, Sanskar Raval
{"title":"Social Network Analysis of Popular YouTube Videos via Vertical Quantitative Mining","authors":"Adam G. M. Pazdor, C. Leung, Thomas J. Czubryt, Junyi Lu, Denys Popov, Sanskar Raval","doi":"10.1109/ASONAM55673.2022.10068640","DOIUrl":null,"url":null,"abstract":"Frequent itemset (or frequent pattern) mining is a technique used in big data mining to discover frequently occurring sets of items (such as popular co-purchased merchandise) and has numerous applications in the field of databases. Traditional frequent pattern mining algorithms only look at Boolean mining; that is, considering only the presence or absence of an item in an itemset. In this paper, we present an algorithm for mining interesting quantitative frequent patterns. Our qEclat (or Q-Eclat) algorithm extends the common Eclat algorithm to be able to vertically mine quantitative patterns. When compared with the existing MQA-M algorithm (which was built for quantitative horizontal frequent pattern mining), our evaluation results show that qEclat mines quantitative frequent patterns faster.","PeriodicalId":423113,"journal":{"name":"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"45 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASONAM55673.2022.10068640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Frequent itemset (or frequent pattern) mining is a technique used in big data mining to discover frequently occurring sets of items (such as popular co-purchased merchandise) and has numerous applications in the field of databases. Traditional frequent pattern mining algorithms only look at Boolean mining; that is, considering only the presence or absence of an item in an itemset. In this paper, we present an algorithm for mining interesting quantitative frequent patterns. Our qEclat (or Q-Eclat) algorithm extends the common Eclat algorithm to be able to vertically mine quantitative patterns. When compared with the existing MQA-M algorithm (which was built for quantitative horizontal frequent pattern mining), our evaluation results show that qEclat mines quantitative frequent patterns faster.