A web personalization system based on web usage mining techniques

Massimiliano Albanese, A. Picariello, Carlo Sansone, Lucio Sansone
{"title":"A web personalization system based on web usage mining techniques","authors":"Massimiliano Albanese, A. Picariello, Carlo Sansone, Lucio Sansone","doi":"10.1145/1013367.1013439","DOIUrl":null,"url":null,"abstract":"In the past few years, web usage mining techniques have grown rapidly together with the explosive growth of the web, both in the research and commercial areas. In this work we present a Web mining strategy for Web personalization based on a novel pattern recognition strategy which analyzes and classifies both static and dynamic features. The results of experiments on the data from a large commercial web site are presented to show the effectiveness of the proposed system.","PeriodicalId":409891,"journal":{"name":"WWW Alt. '04","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WWW Alt. '04","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1013367.1013439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

In the past few years, web usage mining techniques have grown rapidly together with the explosive growth of the web, both in the research and commercial areas. In this work we present a Web mining strategy for Web personalization based on a novel pattern recognition strategy which analyzes and classifies both static and dynamic features. The results of experiments on the data from a large commercial web site are presented to show the effectiveness of the proposed system.
基于web使用挖掘技术的web个性化系统
在过去的几年里,随着web的爆炸式增长,web使用挖掘技术在研究和商业领域都得到了迅速的发展。在这项工作中,我们提出了一种基于新的模式识别策略的Web个性化挖掘策略,该策略对静态和动态特征进行分析和分类。在一个大型商业网站数据上的实验结果表明了该系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信