An adaptable system to construct fuzzy decision trees

C. Marsala, B. Bouchon-Meunier
{"title":"An adaptable system to construct fuzzy decision trees","authors":"C. Marsala, B. Bouchon-Meunier","doi":"10.1109/NAFIPS.1999.781687","DOIUrl":null,"url":null,"abstract":"Nowadays, data mining is an active domain that is linked to data management and machine learning techniques. However, even if inductive learning methods work well when handling symbolic attributes, problems arise when considering numerical or numerical-symbolic (num/symb) attributes. This problem can be solved by introducing tools from fuzzy set theory to handle such kinds of data. In this paper, we present an adaptable system to construct and to use fuzzy decision trees by means of several kinds of operators.","PeriodicalId":335957,"journal":{"name":"18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397)","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.1999.781687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

Nowadays, data mining is an active domain that is linked to data management and machine learning techniques. However, even if inductive learning methods work well when handling symbolic attributes, problems arise when considering numerical or numerical-symbolic (num/symb) attributes. This problem can be solved by introducing tools from fuzzy set theory to handle such kinds of data. In this paper, we present an adaptable system to construct and to use fuzzy decision trees by means of several kinds of operators.
构建模糊决策树的自适应系统
如今,数据挖掘是一个与数据管理和机器学习技术相关联的活跃领域。然而,即使归纳学习方法在处理符号属性时工作得很好,在考虑数字或数字符号(num/symb)属性时也会出现问题。这个问题可以通过引入模糊集理论的工具来处理这类数据来解决。本文提出了一种利用几种算子构造和使用模糊决策树的自适应系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信