Schedule optimization using fuzzy inference

H. Soma, M. Hori, T. Sogou
{"title":"Schedule optimization using fuzzy inference","authors":"H. Soma, M. Hori, T. Sogou","doi":"10.1109/FUZZY.1995.409831","DOIUrl":null,"url":null,"abstract":"Many search algorithms have been developed to solve combinatorial optimization problems. The simulation method is often used to make practical job shop schedules, because search algorithms take long processing time. This paper proposes a fast algorithm to improve the schedule. This algorithm is based on general heuristic which reforms the Gantt chart. It is very useful for improving the schedules which are made by a simulation method. Including both logical and numerical judgment, the heuristic is implemented by fuzzy rules and membership functions.<<ETX>>","PeriodicalId":150477,"journal":{"name":"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1995.409831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Many search algorithms have been developed to solve combinatorial optimization problems. The simulation method is often used to make practical job shop schedules, because search algorithms take long processing time. This paper proposes a fast algorithm to improve the schedule. This algorithm is based on general heuristic which reforms the Gantt chart. It is very useful for improving the schedules which are made by a simulation method. Including both logical and numerical judgment, the heuristic is implemented by fuzzy rules and membership functions.<>
使用模糊推理的调度优化
为了解决组合优化问题,已经开发了许多搜索算法。由于搜索算法需要较长的处理时间,因此通常采用仿真方法来制定实际的作业车间调度。本文提出了一种改进调度的快速算法。该算法基于对甘特图进行改造的一般启发式算法。这对改进用模拟方法制定的排程是很有帮助的。启发式包括逻辑判断和数值判断,采用模糊规则和隶属函数实现启发式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信