Stabilization of the Reaction Wheel Pendulum via a Third Order Discontinuous Integral Sliding Mode Algorithm

Diego Gutiérrez‐Oribio, Ángel Mercado‐Uribe, J. Moreno, L. Fridman
{"title":"Stabilization of the Reaction Wheel Pendulum via a Third Order Discontinuous Integral Sliding Mode Algorithm","authors":"Diego Gutiérrez‐Oribio, Ángel Mercado‐Uribe, J. Moreno, L. Fridman","doi":"10.1109/VSS.2018.8460358","DOIUrl":null,"url":null,"abstract":"In this work, the stabilization of the Reaction Wheel Pendulum using a Third Order Discontinuous Integral Sliding Mode as the control is done. The use of the discontinuous function in the integral action generates a continuous control signal and minimize the chattering effect. The states reach the origin even in presence of Lipschitz uncertain-ties/disturbances. The stability analysis is presented using a Lyapunov approach and homogeneity properties, ensuring a local finite-time convergence of the states to the origin. Simulations and experiments were made to check the performance of the presented algorithm.","PeriodicalId":127777,"journal":{"name":"2018 15th International Workshop on Variable Structure Systems (VSS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Workshop on Variable Structure Systems (VSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VSS.2018.8460358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this work, the stabilization of the Reaction Wheel Pendulum using a Third Order Discontinuous Integral Sliding Mode as the control is done. The use of the discontinuous function in the integral action generates a continuous control signal and minimize the chattering effect. The states reach the origin even in presence of Lipschitz uncertain-ties/disturbances. The stability analysis is presented using a Lyapunov approach and homogeneity properties, ensuring a local finite-time convergence of the states to the origin. Simulations and experiments were made to check the performance of the presented algorithm.
基于三阶不连续积分滑模算法的反作用轮摆镇定
本文采用三阶不连续积分滑模作为控制,实现了反作用轮摆的镇定。在积分作用中使用不连续函数产生连续的控制信号,使抖振效应最小化。即使存在利普希茨不确定性/扰动,状态也能到达原点。利用Lyapunov方法和齐次性对系统进行了稳定性分析,保证了系统状态局部有限时间收敛于原点。通过仿真和实验验证了该算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信