{"title":"Near Time-Optimal Flexible-Joint Trajectory Planning Algorithm for Robotic Manipulators","authors":"M. Ruf","doi":"10.1109/CCTA.2018.8511567","DOIUrl":null,"url":null,"abstract":"In this paper, a new hybrid time-optimal flexible-joint trajectory planning algorithm is introduced. Time-optimal rigid-body trajectories contain sudden changes of acceleration, which can result in violation of constraints when applied to flexible robotic manipulators. The abrupt acceleration changes are replaced by a smooth time-optimal switching strategy, which is based on the solution of a two-mass oscillator two-point boundary-value problem. It is designed such that the two-mass oscillator's flexible modes are not excited. In between the transitions, a multi-axis rigid-body model is used. This combination of flexible and rigid-body models allows to design a computationally very efficient trajectory planning algorithm, which considers multi-axis dynamics as well as some important inherent flexibilities.","PeriodicalId":358360,"journal":{"name":"2018 IEEE Conference on Control Technology and Applications (CCTA)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Control Technology and Applications (CCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCTA.2018.8511567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, a new hybrid time-optimal flexible-joint trajectory planning algorithm is introduced. Time-optimal rigid-body trajectories contain sudden changes of acceleration, which can result in violation of constraints when applied to flexible robotic manipulators. The abrupt acceleration changes are replaced by a smooth time-optimal switching strategy, which is based on the solution of a two-mass oscillator two-point boundary-value problem. It is designed such that the two-mass oscillator's flexible modes are not excited. In between the transitions, a multi-axis rigid-body model is used. This combination of flexible and rigid-body models allows to design a computationally very efficient trajectory planning algorithm, which considers multi-axis dynamics as well as some important inherent flexibilities.