{"title":"Emission control of gas effluents from geothermal power plants.","authors":"R C Axtmann","doi":"10.1080/00139307509437427","DOIUrl":null,"url":null,"abstract":"<p><p>Geothermal steam at the world's five largest power plants contains from 0.15 to 30% noncondensable gases including CO(2), H(2)S, H(2), CH(4), N(2), H(3)BO(3), and NH(3). At four of the plants the gases are first separated from the steam and then discharged to the environment; at the fifth, the noncondensables exhaust directly to the atmosphere along with spent steam. Some CO(2) and sulfur emission rates rival those from fossil-fueled plants on a per megawatt-day basis. The ammonia and boron effluents can interfere with animal and plant life. The effects of sulfur (which emerges as H(2)S but may oxidize to SO(2)) on either ambient air quality or longterm human health are largely unknown. Most geothermal turbines are equipped with direct contact condensers which complicate emission control because they provide two or more pathways for the effluents to reach the environment. Use of direct contact condensers could permit efficient emission control if coupled to processes that produce saleable quantities of purified carbon dioxide and elemental sulfur.</p>","PeriodicalId":11979,"journal":{"name":"Environmental letters","volume":"8 2","pages":"135-46"},"PeriodicalIF":0.0000,"publicationDate":"1975-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00139307509437427","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00139307509437427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Geothermal steam at the world's five largest power plants contains from 0.15 to 30% noncondensable gases including CO(2), H(2)S, H(2), CH(4), N(2), H(3)BO(3), and NH(3). At four of the plants the gases are first separated from the steam and then discharged to the environment; at the fifth, the noncondensables exhaust directly to the atmosphere along with spent steam. Some CO(2) and sulfur emission rates rival those from fossil-fueled plants on a per megawatt-day basis. The ammonia and boron effluents can interfere with animal and plant life. The effects of sulfur (which emerges as H(2)S but may oxidize to SO(2)) on either ambient air quality or longterm human health are largely unknown. Most geothermal turbines are equipped with direct contact condensers which complicate emission control because they provide two or more pathways for the effluents to reach the environment. Use of direct contact condensers could permit efficient emission control if coupled to processes that produce saleable quantities of purified carbon dioxide and elemental sulfur.