Nanocrystalline C-Ni Hybrid Nanoporous Monoliths for Large-Capacity and Ultrahigh-Rate Energy Storage

Kemeng Ji, Jiuhui Han, Bo Wang, H. Dai, Yuan Tian, A. Hirata, Lijing Kang, Pan Liu, T. Fujita, Yoshikazu Ito, Y. Oyama
{"title":"Nanocrystalline C-Ni Hybrid Nanoporous Monoliths for Large-Capacity and Ultrahigh-Rate Energy Storage","authors":"Kemeng Ji, Jiuhui Han, Bo Wang, H. Dai, Yuan Tian, A. Hirata, Lijing Kang, Pan Liu, T. Fujita, Yoshikazu Ito, Y. Oyama","doi":"10.2139/ssrn.3207211","DOIUrl":null,"url":null,"abstract":"Graphene material is promising for harmonizing supercapacitor-like power density and battery-level energy density into one electrochemical energy storage (EES) system. Cost-effective, controlled, and massive production of graphene material and its successful application in practical EES are two significant challenges yet to be resolved. By developing a simple nickel nitrate-based hard-template preparation, this study demonstrates the smart design of nanocrystalline C-Ni hybrid monoliths with three-dimensionally ordered macroporous (3DOM) frameworks for high-efficiency EES. The abundant Li-storage sites and mixed high electronic and ionic conductivities grant such freestanding C-Ni composite electrode material large reversible capacity and high-rate capability through thousands of cycles even at a great thickness and using no extra current collector. This 3DOM strategy will facilitate real EES applications of graphene materials, and the yielded nanocrystalline-graphene material is promising to replace graphite anodes in current commercial LIBs with limited performances.","PeriodicalId":360688,"journal":{"name":"EngRN: Electrochemical Energy Engineering (EngRN) (Topic)","volume":"267 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EngRN: Electrochemical Energy Engineering (EngRN) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3207211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Graphene material is promising for harmonizing supercapacitor-like power density and battery-level energy density into one electrochemical energy storage (EES) system. Cost-effective, controlled, and massive production of graphene material and its successful application in practical EES are two significant challenges yet to be resolved. By developing a simple nickel nitrate-based hard-template preparation, this study demonstrates the smart design of nanocrystalline C-Ni hybrid monoliths with three-dimensionally ordered macroporous (3DOM) frameworks for high-efficiency EES. The abundant Li-storage sites and mixed high electronic and ionic conductivities grant such freestanding C-Ni composite electrode material large reversible capacity and high-rate capability through thousands of cycles even at a great thickness and using no extra current collector. This 3DOM strategy will facilitate real EES applications of graphene materials, and the yielded nanocrystalline-graphene material is promising to replace graphite anodes in current commercial LIBs with limited performances.
用于大容量超高速率储能的纳米晶C-Ni杂化纳米多孔整体材料
石墨烯材料有望将超级电容器的功率密度和电池级的能量密度统一到一个电化学储能系统中。石墨烯材料的成本效益、控制和大规模生产及其在实际EES中的成功应用是两个尚未解决的重大挑战。通过开发一种简单的基于硝酸镍的硬模板制备方法,本研究展示了具有三维有序大孔(3DOM)框架的纳米晶C-Ni杂化单体的智能设计,用于高效EES。丰富的锂存储位点和混合的高电子和离子电导率使这种独立的C-Ni复合电极材料即使在大厚度和不使用额外的集流器的情况下也具有大的可逆容量和高倍率,可以通过数千次循环。这种3DOM策略将促进石墨烯材料在EES中的实际应用,并且所制备的纳米晶石墨烯材料有望取代目前商用锂离子电池中性能有限的石墨阳极。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信