Development of an Analog Front-End for Brain-Computer Interfaces

Sebastian Doliwa, Andreas Erbslöh, K. Seidl, Ioannis Iossifidis
{"title":"Development of an Analog Front-End for Brain-Computer Interfaces","authors":"Sebastian Doliwa, Andreas Erbslöh, K. Seidl, Ioannis Iossifidis","doi":"10.1109/prime55000.2022.9816757","DOIUrl":null,"url":null,"abstract":"In the context of the development of an implantable embedded system interfacing brain activity and enabling paralyzed patients to interact with devices that are usable on an everyday basis, we designed a real-time-suitable, low-power hardware architecture with an artifact-suppressing analog front-end, connected to a neural signal processing pipeline. As part of the ultra low-noise analog front-end (four-channel), the common average referencing (CAR) algorithm is implemented to reduce spurious signals from the environment by recording the adjacent electrodes of an invasive microelectrode array (MEA). A Field-Programmable Gate Array (FPGA) is used for data acquisition of extracellular spike activity and data transmission via Ethernet to a host computer for external processing of neural signals. The presented prototype achieves an SNR of 38 dB by applying spike inputs with amplitudes of 100 $\\mu$V using commercially available components.","PeriodicalId":142196,"journal":{"name":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","volume":"265 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/prime55000.2022.9816757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the context of the development of an implantable embedded system interfacing brain activity and enabling paralyzed patients to interact with devices that are usable on an everyday basis, we designed a real-time-suitable, low-power hardware architecture with an artifact-suppressing analog front-end, connected to a neural signal processing pipeline. As part of the ultra low-noise analog front-end (four-channel), the common average referencing (CAR) algorithm is implemented to reduce spurious signals from the environment by recording the adjacent electrodes of an invasive microelectrode array (MEA). A Field-Programmable Gate Array (FPGA) is used for data acquisition of extracellular spike activity and data transmission via Ethernet to a host computer for external processing of neural signals. The presented prototype achieves an SNR of 38 dB by applying spike inputs with amplitudes of 100 $\mu$V using commercially available components.
脑机接口模拟前端的开发
在开发可植入嵌入式系统接口大脑活动的背景下,使瘫痪患者能够与日常可用的设备进行交互,我们设计了一个实时,低功耗的硬件架构,具有伪影抑制模拟前端,连接到神经信号处理管道。作为超低噪声模拟前端(四通道)的一部分,实现了共同平均参考(CAR)算法,通过记录侵入式微电极阵列(MEA)的相邻电极来减少来自环境的杂散信号。现场可编程门阵列(FPGA)用于采集细胞外尖峰活动的数据,并通过以太网将数据传输到主机进行神经信号的外部处理。该原型通过使用市售元件应用振幅为100 $\mu$V的尖峰输入,实现了38 dB的信噪比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信