Sharp feature detection in point clouds

Christopher Weber, S. Hahmann, H. Hagen
{"title":"Sharp feature detection in point clouds","authors":"Christopher Weber, S. Hahmann, H. Hagen","doi":"10.1109/SMI.2010.32","DOIUrl":null,"url":null,"abstract":"This paper presents a new technique for detecting sharp features on point-sampled geometry. Sharp features of different nature and possessing angles varying from obtuse to acute can be identified without any user interaction. The algorithm works directly on the point cloud, no surface reconstruction is needed. Given an unstructured point cloud, our method first computes a Gauss map clustering on local neighborhoods in order to discard all points which are unlikely to belong to a sharp feature. As usual, a global sensitivity parameter is used in this stage. In a second stage, the remaining feature candidates undergo a more precise iterative selection process. Central to our method is the automatic computation of an adaptive sensitivity parameter, increasing significantly the reliability and making the identification more robust in the presence of obtuse and acute angles. The algorithm is fast and does not depend on the sampling resolution, since it is based on a local neighbor graph computation.","PeriodicalId":404708,"journal":{"name":"2010 Shape Modeling International Conference","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"152","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Shape Modeling International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMI.2010.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 152

Abstract

This paper presents a new technique for detecting sharp features on point-sampled geometry. Sharp features of different nature and possessing angles varying from obtuse to acute can be identified without any user interaction. The algorithm works directly on the point cloud, no surface reconstruction is needed. Given an unstructured point cloud, our method first computes a Gauss map clustering on local neighborhoods in order to discard all points which are unlikely to belong to a sharp feature. As usual, a global sensitivity parameter is used in this stage. In a second stage, the remaining feature candidates undergo a more precise iterative selection process. Central to our method is the automatic computation of an adaptive sensitivity parameter, increasing significantly the reliability and making the identification more robust in the presence of obtuse and acute angles. The algorithm is fast and does not depend on the sampling resolution, since it is based on a local neighbor graph computation.
点云中的尖锐特征检测
提出了一种检测点采样几何图像尖锐特征的新方法。不同性质和角度从钝角到锐角不等的尖锐特征无需用户交互即可识别。该算法直接作用于点云,不需要重建表面。给定一个非结构化点云,我们的方法首先在局部邻域上计算高斯图聚类,以丢弃所有不可能属于尖锐特征的点。通常,在此阶段使用全局灵敏度参数。在第二阶段,剩余的候选特征经历更精确的迭代选择过程。该方法的核心是自适应灵敏度参数的自动计算,大大提高了可靠性,使识别在钝角和锐角存在时更加鲁棒。该算法基于局部邻居图计算,速度快,不依赖于采样分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信