Surprising Strategies Obtained by Stochastic Optimization in Partially Observable Games

M. Cauwet, O. Teytaud
{"title":"Surprising Strategies Obtained by Stochastic Optimization in Partially Observable Games","authors":"M. Cauwet, O. Teytaud","doi":"10.1109/CEC.2018.8477919","DOIUrl":null,"url":null,"abstract":"This paper studies the optimization of strategies in the context of possibly randomized two players zero-sum games with incomplete information. We compare 5 algorithms for tuning the parameters of strategies over a benchmark of 12 games. A first evolutionary approach consists in designing a highly randomized opponent (called naive opponent) and optimizing the parametric strategy against it; a second one is optimizing iteratively the strategy, i.e. constructing a sequence of strategies starting from the naive one. 2 versions of coevolutions, real and approximate, are also tested as well as a seed method. The coevolution methods were performing well, but results were not stable from one game to another. In spite of its simplicity, the seed method, which can be seen as an extremal version of coevolution, works even when nothing else works. Incidentally, these methods brought out some unexpected strategies for some games, such as Batawaf or the game of War, which seem, at first view, purely random games without any structured actions possible for the players or Guess Who, where a dichotomy between the characters seems to be the most reasonable strategy. All source codes of games are written in Matlab/Octave and are freely available for download.","PeriodicalId":212677,"journal":{"name":"2018 IEEE Congress on Evolutionary Computation (CEC)","volume":"261 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2018.8477919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper studies the optimization of strategies in the context of possibly randomized two players zero-sum games with incomplete information. We compare 5 algorithms for tuning the parameters of strategies over a benchmark of 12 games. A first evolutionary approach consists in designing a highly randomized opponent (called naive opponent) and optimizing the parametric strategy against it; a second one is optimizing iteratively the strategy, i.e. constructing a sequence of strategies starting from the naive one. 2 versions of coevolutions, real and approximate, are also tested as well as a seed method. The coevolution methods were performing well, but results were not stable from one game to another. In spite of its simplicity, the seed method, which can be seen as an extremal version of coevolution, works even when nothing else works. Incidentally, these methods brought out some unexpected strategies for some games, such as Batawaf or the game of War, which seem, at first view, purely random games without any structured actions possible for the players or Guess Who, where a dichotomy between the characters seems to be the most reasonable strategy. All source codes of games are written in Matlab/Octave and are freely available for download.
部分可观察对策随机优化的惊奇策略
本文研究了不完全信息下可能随机的二人零和博弈中的策略优化问题。我们在12个游戏的基准上比较了5种算法来调整策略参数。第一种进化方法包括设计一个高度随机的对手(称为幼稚对手),并针对它优化参数策略;第二种是迭代优化策略,即从朴素策略开始构建一系列策略。还测试了两种版本的共同进化,真实和近似,以及种子方法。协同进化方法表现良好,但结果在不同博弈之间并不稳定。种子法可以被看作是共同进化的一个极端版本,尽管它很简单,但即使在其他方法都不起作用的情况下,它也能起作用。顺便说一下,这些方法为某些游戏带来了一些意想不到的策略,例如《Batawaf》或《War》,乍一看,这是纯粹的随机游戏,玩家没有任何结构化的行动,或者《Guess Who》,其中角色之间的二分法似乎是最合理的策略。所有游戏的源代码都是用Matlab/Octave编写的,可以免费下载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信