Khmer-Chinese bilingual LDA topic model based on dictionary

Xiaohui Liu, Xin Yan, Guangyi Xu, Zhengtao Yu, Guangshun Qin
{"title":"Khmer-Chinese bilingual LDA topic model based on dictionary","authors":"Xiaohui Liu, Xin Yan, Guangyi Xu, Zhengtao Yu, Guangshun Qin","doi":"10.1504/ijcsm.2019.10025672","DOIUrl":null,"url":null,"abstract":"Multilingual probabilistic topic models have been widely used in topic of mining area in multilingual documents, this paper proposes the Khmer-Chinese bilingual latent Dirichlet allocation (KCB-LDA) model based on the bilingual dictionary. With the bilingual attribute of entries in dictionary, this method first maps the words expressing same semantic meaning to the concept abstract layer, then group concepts into the same topic space. Finally, documents in different languages will share the same latent topics. The same topics can be represented in both Chinese and Khmer jointly when given a bilingual corpus by the introduction of the concept layer. The experimental results show that our topic modelling approach has better predictive power.","PeriodicalId":399731,"journal":{"name":"Int. J. Comput. Sci. Math.","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcsm.2019.10025672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multilingual probabilistic topic models have been widely used in topic of mining area in multilingual documents, this paper proposes the Khmer-Chinese bilingual latent Dirichlet allocation (KCB-LDA) model based on the bilingual dictionary. With the bilingual attribute of entries in dictionary, this method first maps the words expressing same semantic meaning to the concept abstract layer, then group concepts into the same topic space. Finally, documents in different languages will share the same latent topics. The same topics can be represented in both Chinese and Khmer jointly when given a bilingual corpus by the introduction of the concept layer. The experimental results show that our topic modelling approach has better predictive power.
基于字典的高汉双语LDA主题模型
多语概率主题模型在多语文档的矿区主题中得到了广泛的应用,本文提出了基于双语词典的高汉双语潜狄利克雷分配(KCB-LDA)模型。该方法利用字典条目的双语属性,首先将表达相同语义的词映射到概念抽象层,然后将概念分组到相同的主题空间中。最后,不同语言的文档将共享相同的潜在主题。通过引入概念层,在双语语料库中可以同时用汉语和高棉语表示相同的主题。实验结果表明,本文提出的主题建模方法具有较好的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信