Algorithms for edge coloring bipartite graphs

H. Gabow, O. Kariv
{"title":"Algorithms for edge coloring bipartite graphs","authors":"H. Gabow, O. Kariv","doi":"10.1145/800133.804346","DOIUrl":null,"url":null,"abstract":"A minimum edge coloring of a bipartite graph is a partition of the edges into &Dgr; matchings, where &Dgr; is the maximum degree in the graph. Coloring algorithms are presented that use time O(min(¦E¦ &Dgr; log n, ¦E¦ @@@@n log n, n2log &Dgr;)) and space O(n&Dgr;). This compares favorably to the previous O(¦E¦ [equation] log &Dgr;) time bound. The coloring algorithms also find maximum matchings on regular (or semi-regular) bipartite graphs. The time bounds compare favorably to the O(¦E¦ @@@@n) matching algorithm, expect when [equation] ≤ &Dgr; ≤ @@@@n log n.","PeriodicalId":313820,"journal":{"name":"Proceedings of the tenth annual ACM symposium on Theory of computing","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1978-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the tenth annual ACM symposium on Theory of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800133.804346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

A minimum edge coloring of a bipartite graph is a partition of the edges into &Dgr; matchings, where &Dgr; is the maximum degree in the graph. Coloring algorithms are presented that use time O(min(¦E¦ &Dgr; log n, ¦E¦ @@@@n log n, n2log &Dgr;)) and space O(n&Dgr;). This compares favorably to the previous O(¦E¦ [equation] log &Dgr;) time bound. The coloring algorithms also find maximum matchings on regular (or semi-regular) bipartite graphs. The time bounds compare favorably to the O(¦E¦ @@@@n) matching algorithm, expect when [equation] ≤ &Dgr; ≤ @@@@n log n.
边着色二部图的算法
二部图的最小边着色是将边划分为&Dgr;匹配,其中&Dgr;是图中的最大度。提出了使用时间为O(min(…)&Dgr;log n,……@@@@n log n, n2log &Dgr;))和空间0 (n&Dgr;)这比之前的O(…[等式]log &Dgr;)时间限制有利。着色算法也能在正则(或半正则)二部图上找到最大匹配。除了当[方程]≤&Dgr;≤@@@@n log n。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信