{"title":"Action Recognition by 3D Convolutional Network","authors":"Matúš Brezovský, Dominik Sopiak, M. Oravec","doi":"10.23919/ELMAR.2018.8534657","DOIUrl":null,"url":null,"abstract":"In this paper we focused on sport action recognition with 3D convolutional network. We executed two different experiments. In the first experiment we distinguished two similar activities: running and walking. The experiment proved that 3D convolutional network is able to learn spatio-temporal features of video sequence. We compared three different 3D convolutional networks and the best accuracy was achieved by architecture Al reached 85%. The second experiment was performed on subset of UCF101 dataset. We selected 15 activities. Architecture A1 achieved accuracy 80.7%. Our results show that it is possible to achieve relatively high accuracy using subtile architecture of 3D convolutional network.","PeriodicalId":175742,"journal":{"name":"2018 International Symposium ELMAR","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Symposium ELMAR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ELMAR.2018.8534657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper we focused on sport action recognition with 3D convolutional network. We executed two different experiments. In the first experiment we distinguished two similar activities: running and walking. The experiment proved that 3D convolutional network is able to learn spatio-temporal features of video sequence. We compared three different 3D convolutional networks and the best accuracy was achieved by architecture Al reached 85%. The second experiment was performed on subset of UCF101 dataset. We selected 15 activities. Architecture A1 achieved accuracy 80.7%. Our results show that it is possible to achieve relatively high accuracy using subtile architecture of 3D convolutional network.