A. Demichelis, C. Divieto, L. Mortati, M. Sassi, G. Sassi
{"title":"Preliminary measurements of elasticity properties of lung tumor living cells for cancer detection","authors":"A. Demichelis, C. Divieto, L. Mortati, M. Sassi, G. Sassi","doi":"10.1109/MeMeA.2015.7145206","DOIUrl":null,"url":null,"abstract":"Recent studies recognized the cell stiffness changes as a marker for cancer detection. Reliable and reproducible measurements of elastic modulus, mapping different cell regions are the basis for developing a new methodology for cancer detection. To this aim, a metrological characterized AFM microscope has been developed, micro- and nano-indentation of soft materials, used as elastic modulus reference, were done and a robust statistical data analysis has been performed. Contact images and force mapping of A549 living cells allowed 4% measurement relative reproducibility. A modal cell elastic modulus 0.5 kPa, was obtained. A highly spatially resolved stiffness distribution on the overall cell regions has been obtained through data analysis, realizing a powerful tool for cell mechanics analysis.","PeriodicalId":277757,"journal":{"name":"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings","volume":"258 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA.2015.7145206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Recent studies recognized the cell stiffness changes as a marker for cancer detection. Reliable and reproducible measurements of elastic modulus, mapping different cell regions are the basis for developing a new methodology for cancer detection. To this aim, a metrological characterized AFM microscope has been developed, micro- and nano-indentation of soft materials, used as elastic modulus reference, were done and a robust statistical data analysis has been performed. Contact images and force mapping of A549 living cells allowed 4% measurement relative reproducibility. A modal cell elastic modulus 0.5 kPa, was obtained. A highly spatially resolved stiffness distribution on the overall cell regions has been obtained through data analysis, realizing a powerful tool for cell mechanics analysis.