Are modified back-propagation algorithms worth the effort?

D. Alpsan, M. Towsey, O. Ozdamar, A. Tsoi, D. Ghista
{"title":"Are modified back-propagation algorithms worth the effort?","authors":"D. Alpsan, M. Towsey, O. Ozdamar, A. Tsoi, D. Ghista","doi":"10.1109/ICNN.1994.374227","DOIUrl":null,"url":null,"abstract":"A wide range of modifications and extensions to the backpropagation (BP) algorithm have been tested on a real world medical problem. Our results show that: 1) proper tuning of learning parameters of standard BP not only increases the speed of learning but also has a significant effect on generalisation; 2) parameter combinations and training options which lead to fast learning do not usually yield good generalisation and vice versa; 3) standard BP may be fast enough when its parameters are finely tuned; 4) modifications developed on artificial problems for faster learning do not necessarily give faster learning on real-world problems, and when they do, it may be at the expense of generalisation; and 5) even when modified BP algorithms perform well, they may require extensive fine-tuning to achieve this performance. For our problem, none of the modifications could justify the effort to implement them.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"549 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A wide range of modifications and extensions to the backpropagation (BP) algorithm have been tested on a real world medical problem. Our results show that: 1) proper tuning of learning parameters of standard BP not only increases the speed of learning but also has a significant effect on generalisation; 2) parameter combinations and training options which lead to fast learning do not usually yield good generalisation and vice versa; 3) standard BP may be fast enough when its parameters are finely tuned; 4) modifications developed on artificial problems for faster learning do not necessarily give faster learning on real-world problems, and when they do, it may be at the expense of generalisation; and 5) even when modified BP algorithms perform well, they may require extensive fine-tuning to achieve this performance. For our problem, none of the modifications could justify the effort to implement them.<>
修改后的反向传播算法值得付出努力吗?
对反向传播(BP)算法进行了广泛的修改和扩展,并在实际医疗问题上进行了测试。结果表明:1)适当调整标准BP的学习参数不仅提高了学习速度,而且对泛化有显著的影响;2)导致快速学习的参数组合和训练选项通常不会产生良好的泛化,反之亦然;3)标准BP在参数微调后可能足够快;4)为了更快地学习而对人工问题进行的修改并不一定能加快对现实问题的学习,即使这样做了,也可能以牺牲泛化为代价;5)即使修改后的BP算法表现良好,它们也可能需要大量的微调才能达到这种性能。对于我们的问题,没有任何修改可以证明实现它们的努力是合理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信