{"title":"Land-cover monitoring using time-series hyperspectral data via fractional-order darwinian particle swarm optimization segmentation","authors":"N. Yokoya, Pedram Ghamisi","doi":"10.1109/WHISPERS.2016.8071761","DOIUrl":null,"url":null,"abstract":"This paper presents a new method for unsupervised detection of multiple changes using time-serires hyperspectral data. The proposed method is based on fractional-order Darwinian particle swarm optimization (FODPSO) segmentation. The proposed method is applied to monitor land-cover changes following the Fukushima Daiichi nuclear disaster using multitemporal Hyperion images. Experimental results indicate that the integration of segmentation and a time-series of hyperspectral images has great potential for unsupervised detection of multiple changes.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"240 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
This paper presents a new method for unsupervised detection of multiple changes using time-serires hyperspectral data. The proposed method is based on fractional-order Darwinian particle swarm optimization (FODPSO) segmentation. The proposed method is applied to monitor land-cover changes following the Fukushima Daiichi nuclear disaster using multitemporal Hyperion images. Experimental results indicate that the integration of segmentation and a time-series of hyperspectral images has great potential for unsupervised detection of multiple changes.