Piecewise linear definition of transformation functions for speaker de-identification

Carmen Magariños, Paula Lopez-Otero, Laura Docío Fernández, E. R. Banga, C. García-Mateo, D. Erro
{"title":"Piecewise linear definition of transformation functions for speaker de-identification","authors":"Carmen Magariños, Paula Lopez-Otero, Laura Docío Fernández, E. R. Banga, C. García-Mateo, D. Erro","doi":"10.1109/SPLIM.2016.7528408","DOIUrl":null,"url":null,"abstract":"The main drawback of speaker de-identification approaches using voice conversion techniques is the need for parallel corpora to train transformation functions between the source and target speakers. In this paper, a voice conversion approach that does not require training any parameters is proposed: it consists in manually defining frequency warping (FW) based transformations by using piecewise linear approximations. An analysis of the de-identification capabilities of the proposed approach using FW only or combined with FW modification and spectral amplitude scaling (AS) was performed. Experimental results show that, using the manually defined transformations using only FW, it is not possible to obtain de-identified natural sounding speech. Nevertheless, when modifying the FW, both de-identification accuracy and naturalness increase to a great extent. A slight improvement in de-identification was also obtained when applying spectral amplitude scaling.","PeriodicalId":297318,"journal":{"name":"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)","volume":"459 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPLIM.2016.7528408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

The main drawback of speaker de-identification approaches using voice conversion techniques is the need for parallel corpora to train transformation functions between the source and target speakers. In this paper, a voice conversion approach that does not require training any parameters is proposed: it consists in manually defining frequency warping (FW) based transformations by using piecewise linear approximations. An analysis of the de-identification capabilities of the proposed approach using FW only or combined with FW modification and spectral amplitude scaling (AS) was performed. Experimental results show that, using the manually defined transformations using only FW, it is not possible to obtain de-identified natural sounding speech. Nevertheless, when modifying the FW, both de-identification accuracy and naturalness increase to a great extent. A slight improvement in de-identification was also obtained when applying spectral amplitude scaling.
说话人去识别变换函数的分段线性定义
使用语音转换技术的说话人去识别方法的主要缺点是需要平行语料库来训练源和目标说话人之间的转换函数。本文提出了一种不需要训练任何参数的语音转换方法:它包括通过使用分段线性近似手动定义基于频率扭曲(FW)的转换。对仅使用FW或结合FW修改和光谱幅度缩放(AS)的方法的去识别能力进行了分析。实验结果表明,仅使用FW进行人工定义的转换,无法获得去识别的自然发音语音。然而,在对FW进行修改时,去识别的准确性和自然度都有了很大的提高。当应用谱幅缩放时,也获得了去识别的轻微改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信