Human Clustering for A Partner Robot Based on Particle Swarm Optimization

I. A. Sulistijono, N. Kubota
{"title":"Human Clustering for A Partner Robot Based on Particle Swarm Optimization","authors":"I. A. Sulistijono, N. Kubota","doi":"10.1109/ROMAN.2006.314480","DOIUrl":null,"url":null,"abstract":"This paper proposes swarm intelligence for a perceptual system of a partner robot. The robot requires the capability of visual perception to interact with a human. Basically, a robot should perform moving object extraction and clustering for visual perception used in the interaction with a human. In this paper, we propose a total system for human classification for a partner robot by using particle swarm optimization, k-means, self organizing maps and back propagation. The experimental results show that the partner robot can perform the human clustering and classification","PeriodicalId":254129,"journal":{"name":"ROMAN 2006 - The 15th IEEE International Symposium on Robot and Human Interactive Communication","volume":"158 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ROMAN 2006 - The 15th IEEE International Symposium on Robot and Human Interactive Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMAN.2006.314480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper proposes swarm intelligence for a perceptual system of a partner robot. The robot requires the capability of visual perception to interact with a human. Basically, a robot should perform moving object extraction and clustering for visual perception used in the interaction with a human. In this paper, we propose a total system for human classification for a partner robot by using particle swarm optimization, k-means, self organizing maps and back propagation. The experimental results show that the partner robot can perform the human clustering and classification
基于粒子群优化的伙伴机器人人类聚类
提出了一种基于伙伴机器人感知系统的群体智能算法。机器人需要具有视觉感知能力才能与人类互动。基本上,机器人应该进行运动物体的提取和聚类,以用于与人类交互的视觉感知。本文采用粒子群优化、k-means、自组织映射和反向传播等方法,提出了一种伙伴机器人的人类分类系统。实验结果表明,搭档机器人可以完成人类的聚类和分类
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信